
COLEMAN FAMILY AND THE EIGENCURVE

SHILIN LAI

This is the notes for a talk given at the student seminar on p-adic automorphic forms in Fall 2020. We
will first construct Coleman families following [Pil13] and [AIS14]. Then we will survey Buzzard’s axiomatic
construction of eigenvarieties [Buz07] and apply it to the case at hand.

Fix a prime p throughout. For notational simplicity, we assume p 6= 2. Further fix a positive integer N
coprime to p, which will be the tame level.

1. Coleman family

1.1. Review from last time. Let X = X1(N) be the (compactified) modular curve of level Γ1(M), viewed
as an algebraic curve defined over Zp. It classifies pairs {(E,ϕN : µN ↪→ E[N ])}. We now summarize some
key points from the talk last time.

– There is a line bundle ω on X such that classical modular forms of level Γ1(N) and weight k are elements
of H0(X,ω⊗k).

– If p ≥ 5, then there is a modular form of level 1 and weight p− 1 which lifts the Hasse invariant. It defines
a section E ∈ H0(X,ω⊗(p−1)).

– We have the following diagram

Ig1,∞ Igm,∞ . . . Ig∞

...
...

...
...

Ig1,1 Igm,1 . . . Ig1

X X[E−1]/p X[E−1]/pm . . . Xord

Spec Zp Spec Z/pZ Spec Z/pmZ . . . Spf Zp

1+pZp

(Z/pZ)×

where Igm,n is the affine scheme over Z/pmZ classifying triples

(E,ϕp, ϕN ), ϕp : µpn ↪→ E[pn], ϕN : µN ↪→ E

It is a (Z/pnZ)×-torsor over X[E−1]/pm .
– The space of p-adic modular forms is defined by

V := lim←−
m

lim−→
n

H0(Igm,n,OIgm,n
) = H0(Ig∞,OIg∞)

It carries a natural action of Λ = Zp[[Z
×
p ]], coming from the torsor structure.

– If k ≥ 2 is an integer, then we have an embedding

H0(X,ω⊗k) ↪→ V [k]

where V [k] is the subspace where Λ acts by the character z 7→ zk.
– The Hecke algebra acts on V , and the above embedding is Hecke-equivariant. The part of V where Up acts

by a p-adic unit is particularly nice, described by Hida theory.
1
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We now reformulate parts of this slightly. Working with formal schemes directly, let π : Ig∞ → Xord be
the projection and Ω = π∗OIg∞ , then

V = H0(Ig∞,OIg∞) = H0(Xord,Ω)

There is a natural action of Λ on the sheaf Ω. Given an algebra homomorphism κ : Λ→ Cp, we can take the
κ-isotypic component Ω[κ], then

– Mκ := H0(Xord,Ω[κ]) is the space of p-adic modular forms of “weight” κ.
– If k ∈ Z and κk is induced from z 7→ zk, then Ω[κk] ' ω⊗k.
– The restriction H0(X, ω⊗k)→ H0(Xord, ω⊗k) 'Mk is the injection of classical modular forms of weight k

into p-adic modular forms.

The goal of this talk is to refine the picture by introducing overconvergence.

Remark 1.1. As stated, the theory already sounds perfectly reasonable. The issue however is that V is
too large for a rich structural theory. One aspect is that for any weight k, the spectrum of Up acting on
V [k] ⊗Zp Cp is all of Cp, so we don’t have the classical eigenform theory, and we cannot expect a nice
classicality result. Introducing overconvergence is also necessary to relate it to p-adic cohomology theories.

Disclaimer. For the rest of the talk, we will work entirely in the framework of rigid geometry. This has the
effect of replacing various global sections by their rational versions, viewed as p-adic Banach spaces. However,
it is necessary to introduce formal models at various stages. We will sweep it (and a few other things) under
the rug and refer to [Pil13] and [AIP18] for the details.

1.2. Overconvergence. We start with a model example.

Example 1.2. Let D = Sp Qp〈T 〉 be the rigid unit disc, then the space of overconvergent functions on D is

Qp〈T 〉† :=
⋃
r>1

{∑
n≥0

anT
n
∣∣∣ |an|prn → 0

}
In other words it consists of power series which converge on a disc of radius 1 + ε for some ε > 0. This is no
longer a Banach space. Instead, it is a direct limit of Banach spaces, with compact transition maps.

Similarly to how rigid spaces are built from D, there is a general theory of “dagger spaces” built from D†,
with the associated integral theory of “weak formal schemes”. We will define what’s needed by hand.

In the modular curve case, we have a rigid space Xrig and an affinoid open subspace Xord obtained by
removing an open disc of radius 1 around each supersingular point. More precisely, taking the valuation of
(a local lift of) the Hasse invariant determines a function H : Xrig → [0, 1], and the ordinary locus is exactly
H−1({0}). For v < 1, we can enlarge Xord by setting

X(v) = H−1([0, v])

If v is rational, then X(v) is affinoid. It has an invertible sheaf ω.

Definition 1.3. Given an integer k, the space of overconvergent modular forms of weight k is

M†k := H0(Xord,†, ω⊗k) = lim
v→0

H0(X(v), ω⊗k)

As in the model example, the transition maps in the inductive limit are very well-behaved. Recall from
functional analysis that a map between topological vector spaces is completely continuous if it is a strong
limit of finite-rank maps.

Proposition 1.4. Let F be a coherent sheaf on X. If v < v′, then the restriction map

H0(X(v′),F)→ H0(X(v),F)

is completely continuous.

Proof. See section 6.4 of [Bos14]. �

This gives a good theory when k is an integral weight. To construct p-adic families, Coleman used
Eisenstein series in [Col97]. In this talk, we will follow Pilloni [Pil13] and directly construct a sheaf ωκ on
X(v) for v sufficiently small, depending on κ.
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1.3. Partial Igusa tower. Let E be an elliptic curve over a p-adic complete local ring, then the p-divisible
group associated to E has the étale-connected exact sequence

0→ E[p∞]◦ → E[p∞]→ E[p∞]ét → 0

Moreover, if E is ordinary, then µp∞ ' E[p∞]◦. This determines a subgroup H∞,E ⊆ E[p∞]. The Igusa curve
Ig∞ can be described as follows: for K a finite extension of Qp, over a point x ∈ Xord(K) corresponding to
a pair (E,ϕN ),

Ig∞|x(Cp) = {y : H∞,E
∼−→ µp∞}

If E is not ordinary, then the connected component of its reduction is everything, so we can no longer single
out a subgroup of E[p∞]. However, if it is not too supersingular, the theory of canonical subgroup gives us a
good extension at finite level.

Example 1.5 (Buzzard). Let p = 2. For a ∈ C2, let Ea be the elliptic curve

y2 + y + axy = x3 + x2

This has good reduction at 2. With the differential ω = dx
ax+1 , it has Hasse invariant a. The x-coordinates of

the three non-trivial 2-torsion points are roots of

x3 +

(
a2

4
+ 1

)
x2 +

a

2
x+

1

4

Let H = vp(a), then we can draw its Newton polygon.

2H − 2

H − 1

−2

H < 2
3

2H − 2

H − 1

−2

H ≥ 2
3

If H is small, then one root is singled out by its valuation, so we have a canonical Z/2Z ⊆ Ea[2]. As
H → 0, this subgroup reduces to Ea[2]◦ modulo 2. It can be seen as a deformation of the connected part as
Ea becomes slightly supersingular.

Theorem 1.6 (Katz–Lubin, see [Kat73, Chapter 3]). Let E be an elliptic curve over a p-adic ring. Suppose

H(Ex) <
1

pn−2(p+ 1)

for every geometric point x, then E has a canonical subgroup Hn,E ⊆ E[pn], in the sense that

– Hn,E(Cp) ' Z/pnZ.
– The construction is compatible with base change.
– If x is a point of characteristic p and Ex is ordinary, then Hn,Ex

is the connected component of Ex[pn].

Fix n ≥ 1 and v < 1
pn−2(p+1) , then the universal elliptic curve Euniv over X(v) satisfies the condition of

the theorem, so it has a canonical subgroup Hn,Euniv
⊆ Euniv[pn]. Using this subgroup, we can extend the

partial Igusa tower Ign → Xord to X(v), characterized by the property that give a finite extension K of Qp

and a point x ∈ X(v)(K) corresponding to a pair (E,ϕN ),

Ign|x(Cp) = {y : Hn,E
∼−→ µpn}

The restriction of this to Xord is exactly the Igusa tower of level n we defined before.
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1.4. Construction of the sheaf. Recall that the Igusa tower Ig∞ is a Z×p -torsor over Xord, and this Z×p -

action is used to define weight. The partial Igusa tower we constructed is only a (Z/pnZ)×-torsor. We will
construct a further covering of the partial Igusa tower with an action by 1 + pMZp for some M . This space
will be the replacement of the full Igusa tower in the overconvergent setting.

Suppose we are given a morphism of group schemes y : Hn,E → µpn , with everything defined over some

formal scheme. On µpn , there is the canonical differential dT
T . Its pullback under y defines a differential in

ωHn,E
, which we denote by HT(y).

Theorem 1.7 (Théorème 3.1 of [Pil13]). For each n ≥ 1 and v < 1
pn−2(p+1) , there is a diagram of rigid

spaces Fn → Ign → X(v). It is characterized by the following property: given a finite extension K of Qp and
a point x ∈ X(v)(K) corresponding to a pair (E , ϕN ) over OK ,

Fn|x(Cp) = {(y, ω) | y : Hn,E/K
∼−→ µpn , ω ∈ ωE , HT(y) = ω|ωHn,E

}

To understand this definition, fix an elliptic curve over E → SpecOK with a level n canonical subgroup
Hn,E ⊆ E . We now have a morphism of coherent sheaves over OK

OK ' ωE → ωHn,E

defined by pullback. Over the generic fibre, Hn,E is étale, so ωHn,E |K = 0. Therefore, the final equation in the
definition of Fn is a congruence condition, and Fn replaces a point of Ign by a ball. The map qn : Fn → X(v)
has a Z×p -action given by (y, ω) 7→ (uy, uω).

Definition 1.8. Let κ : Z×p → C×p be a character. Define the modular sheaf ωκ on X(v) by

ωκ := ((qn)∗OFn)[κ]

For this to be a reasonable definition, we expect that (1) ωκ is an invertible sheaf; (2) ωκk = ω⊗k if k ∈ Z;
(3) as n and v vary, the various ωκ are compatible. We need an exact description of the fibres of π in order
to verify these properties.

Theorem 1.9 (Proposition 3.1 of [Pil13]). Let E → SpecOK be an elliptic curve with a canonical subgroup
of level n. The module ωHn,E is isomorphic to OK/aOK . Its submodule generated by the image of HT is
cOK/aOK , where

vp(a) = n− pn − 1

p− 1
H(E), vp(c) =

1

p− 1
H(E)

Therefore, Fn → X(v) is a bundle of pn−1(p−1) balls, with centres of valuation H
p−1 and radii p−n+ 1−pn

1−p H .

Example 1.10. In the example with Ea, suppose a ∈ OK , then using the local parameter z = −x/y at
infinity, it’s easy to compute that H1,Ea ' SpecOK [z]/(z2 − a′z), where vp(a

′) = 1 − vp(a). It then follows
that ωH1,Ea

' OK/a′OK . The non-trivial group scheme morphism H1,Ea
→ µ2 is given on coordinates by

z 7→ 1− 2
a′ z ∈ µ2. Under HT, it is mapped to an element of valuation vp(a).

So concretely, the fibre of ωκ above a point x consists of analytic functions on⊔
u∈(Z/pnZ)×

B
(
ux0, p

−M), where v(x0) =
H

p− 1
, M = n− pn − 1

p− 1
H

which transforms by κ under the action of Z×p . Since the action is transitive on the components, it remains

to look at functions on B(x0, p
−M ) satisfying the condition

f(ux) = κ(u)f(x) for all u ∈ 1 + pnZp

The function g(x) := κ
(
x
x0

)
f(x0) is analytic on B(x0, r) for some r > 0 depending on κ. It agrees with f

on B(x0,min(r, p−M )), so by analytic continuation, if any such f exists, it must be g. Therefore, we have
shown that ωκ|x is either 0 or a 1-dimensional space, depending on the relation between κ and H. We need
to make this relation precise.
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Asides on weight space. The weight space W consists of all characters Z×p → C×p . As a rigid space, we have
an identification

W ∼−→ ̂(Z/pZ)× ×B(1, 1−)

where the first projection takes the tame character and the second projection is evaluation at 1 + p. For each
t > 0, we can define a subset Wt = {(χ, λ) ∈ W | vp(λ− 1) ≥ t}. The subsets Wt exhausts W as t ↓ 0.

Given w > 0, a character κ = (χ, λ) ∈ W extends to an analytic function on 1 + pwOCp if and only if

inf
n≥1

(nw − vp(n)) + inf
n≥1

(nvp(λ− 1)− vp(n)) >
p

p− 1

Therefore, there is a function w(t) such that all κ ∈ Wt extends to 1 + pwOCp
if and only if w > w(t). The

function w(t) is decreasing in t, i.e. near the boundary of W, characters are only analytic on a small disc.

Theorem 1.11. Fix parameters n, v, t satisfying

v <
p− 1

pn
, w(t) < n− pn

p− 1
v

For all κ ∈ W(t), the sheaf ωκ is invertible. If k ∈ Z and κk is the character z 7→ zk, then ωκk ' ω⊗k.

Proof. The first part follows from the discussion before the aside and the definition of w(t). For the second
part, we have a natural restriction map ω⊗k → ωκk . Concretely, over a point x, this is induced from the
disjoint union of inclusions ⊔

u∈(Z/pnZ)×

B
(
ux0, p

−M)→ C×p

using the notations from before. Under the assumption on v, this is an injection. Moreover, the weight-κk
functions on the left hand side are translates of z 7→ zk, which extends to an analytic function on C×p . This
extension property proves the isomorphism. �

Definition 1.12. Let κ ∈ W. The space of overconvergent modular forms of weight κ is

M†κ := lim
v→0

H0(X(v), ωκ)

More precisely, given κ, it lies in some space W(t). We first choose n > w(t) + 1, then choose v < p−1
pn .

Now the conditions of the theorem are satisfied. It is easy to check compatibility between different n. The
theorem also tells us M†κk

agrees with the integer weight space defined before.

1.5. Hecke operators. We now look at the actions of Hecke operators. For ` 6= p, the construction by
correspondence works in very much the same way as usual, and we refer to [Pil13, Section 4.1] for more
details. Instead, we will focus on the Up-operator.

Suppose v < p
p+1 , so the first canonical subgroup exists. Consider the following diagram

Dp

X(v) X
(
v
p

)p1 p2

Here, Dp parametrizes the tuples (E,ϕN , D) with (E,ϕN ) ∈ X(v) and D ⊆ E a subgroup of rank p, which
is not the canonical subgroup. The map p1 is the “forget D ” map, which is finite of degree p. The map p2

sends (E,ϕN , D) to (E/D,ϕN/D). A key observation implicit in the diagram is that H(E/D) = 1
pH(E),

which crucially uses D 6= H1,E , see [Kat73, Theorem 3.10.7].

Theorem 1.13. Suppose n ≥ 2 and v < p−1
pn , then there is a natural map

π : Fn ×X(v),p1 Dp → Fn−1 ×X( v
p ),p2 Dp

Proof. We show this at the level of points. Given a finite extension K of Qp, the K-points of the left hand
side parametrizes tuples (E , ϕN , y, ω,D), where

– (E , ϕN ) is an elliptic curve over OK such that H(E) < v, so it has a level n canonical subgroup Hn,E .
– D ⊆ E is an order p subgroup which is not the canonical subgroup.
– y is an isomorphism Hn,E/K

∼−→ µpn .
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– ω ∈ ωE is equal to HT(y) when restricted to ωHn,E .

Let (E ′, ϕ′N ) = (E/D,ϕN/D). We must construct the corresponding (y′, ω′) on this pair.
Since D is not the canonical subgroup, the image of Hn,E in E ′ must be the level n canonical subgroup.

The projection Hn,E/K → Hn,E′/K is an isomorphism over K, since it is surjective and both sides have rank

pn, so y determines an isomorphism y′′ : Hn,E′/K
∼−→ µpn , and we define y′ to be the restriction of y′′ to

Hn−1,E′/K . Pullback also gives an isomorphism ωE′/K ' ωE/K , which defines an ω′ ∈ ωE′/K .
It remains to check that ω′ is integral and satisfies the congruence condition with HT(y′). The key point is

that at an integral level, ωE′ → ωE is multiplication by an element with valuation 1
pH(E). Using the explicit

description of the fibres of Fn from earlier, we see that the congruence relation only holds at level n− 1. �

Using the theorem, we can define the following composite

H0
(
X
(v
p

)
, (qn−1)∗OFn−1

)
p∗2−→ H0(Dp, p

∗
2(qn−1)∗OFn−1

)

π∗−→ H0(Dp, p
∗
1(qn)∗OFn

)
1
p (p1)∗
−−−−→ H0(X(v), (qn)∗OFn

)

Suppose κ ∈ W(t) for a sufficiently large t, then we can take κ-components of everything and get a map
αv : H0

(
X
(
v
p

)
, ωκ)→ H0(X(v), ωκ). The Up operator is its composition with restriction

Up,v : H0(X(v), ωκ)
res−−→ H0

(
X
(v
p

)
, ωκ

)
αv−−→ H0(X(v), ωκ)

Note that the first map is completely continuous by Proposition 1.4, so Up,v is a completely continuous
endomorphism of H0(X(v), ωκ). It is compatible between different v.

Lemma 1.14. Suppose n ≥ 2 and 0 < v′ < v < p−1
pn , then the following diagram commutes

H0(X( vp ), ωκ) H0(X(v), ωκ)

H0(X( v
′

p ), ωκ) H0(X(v′), ωκ)

αv

res res

αv′

It follows that all the Up,v as v → 0 defines an operator Up : M†κ → M†κ. Moreover, we also have
Up, vp = res ◦ αv, which will be important later.

1.6. Coleman family. We now let the characters vary in a family. Fix numbers t, v ∈ Q>0 and n ≥ 2 such

that w(t) < n− 1− pn

p−1v. After multiplying π : Fn → X(v) by W(t), we have a sheaf

Ω = (π × 1)∗OFn×W(t)

on X(v) × W(t). On W(t), there is a universal character κuniv : Z×p → O(W(t))×. Let ωuniv be the
κuniv-component of Ω. This interpolates ωκ in the sense that if κ is associated to the point x ∈ W(t), then

x∗ωuniv = ωκ

By Theorem 1.11, this is an invertible sheaf independent of n. Since the space X(v)×W(t) is affinoid, ωuniv

is associated to a Banach module Mv,t. Its elements are Coleman families.

2. Eigenvarieties

We will now describe Buzzard’s eigenvariety machine [Buz07], in particular explaining what eigenvarieties
are. In the first section, we will describe the input and verify that the work in the previous section produces
the right data. Afterwards, we can forget about all the geometric construction, as the problem now lies
entirely in p-adic functional analysis.
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2.1. Input and output. The eigenvariety machine can be summarized as follows.
Input:

– Weight space: a reduced affinoid rigid space SpR.
– Overconvergent automorphic forms: a projective Banach R-module M .
– Hecke algebra: an R-algebra T with a R-linear map R→ EndR(M).
– Up-operator: an element u ∈ T whose induced map u : M →M is completely continuous.

Output:

– Rigid spaces C → Z → SpR.
– Points of C correspond to finite slope eigensystems of T appearing in M .
– Points of Z correspond to reciprocals of non-zero eigenvalues of u.
– The map C → Z is finite.
– The map C → SpR is locally finite on source, and each irreducible component has Zariski-dense image.

The space C is the eigenvariety, and Z is the spectral variety.
We need to explain the words “projective” and “finite slope”. The first is a technical hypothesis. The

second is an essential restriction on the automorphic forms that we can interpolate this way.

Definition 2.1. Let R be a Banach algebra. Let M be a Banach R-module, then M is projective if for any
surjection of Banach R-modules π : P → Q and continuous map f : M → Q, we can find a continuous map
g : M → P such that f = π ◦ g.

In the usual way one proves projective modules are direct summands, one can prove the following equivalent
characterization, though the open mapping theorem is required.

Lemma 2.2. In the above setting, M is projective if and only if there exists an R-module N such that M⊕N
is isomorphic to c0(I,R) with the supremum norm, where I is some set.

Definition 2.3. Let λ be an eigensystem (i.e. an algebra homomorphism T → L for some finite extension
L of Qp). Its slope is vp(λ(u)). It has finite slope if λ(u) 6= 0.

Remark 2.4. In the case of modular forms, the finite slope condition is that ap(f) 6= 0. From a representation
theoretic point of view, this says the component of f at p is supercuspidal. They are somehow more rigid
and do not form nice families.

2.2. The eigencurve. In our case, the weight space is W(t) for some t ∈ Q>0. Choose v sufficiently small,
then from the previous section, we have a Banach module Mv,t. The Hecke algebra T will be the polynomial
ring over Zp generated by T` for ` 6= p and Up. In our construction of Up, we showed that it is completely
continuous. It remains to check that Mv,t is projective. This is [Pil13, Corollaire 5.1]. The point is to take a
covering by finitely many étale open subsets which trivializes the fibration Fn → X(v) and resolve Mv,t using

the associated Čech complex. The machine produces an eigenvariety Cv,t →W(t). SinceW(t) has dimension
one, Cv,t is a curve.

To construct the eigencurve over W, we need to glue together Cv,t as t ↓ 0. This requires knowing that
Cv,t does not depend on v. The key fact is [Buz07, Lemma 5.6], which we now state.

Lemma 2.5. Let (R,M,T, u) and (R,M ′,T, u′) be two input data. Suppose there is are continuous R-linear
maps α : M →M ′ and r : M ′ →M such that r is completely continuous, r ◦ α = u′, and α ◦ r = u, then the
eigenvarieties associated to the two data are canonically isomorphic.

The discussion following Lemma 1.14 exactly tells us that the restriction Mv,t → M v
p ,t

and the α map

going the other way satisfies the conditions of the lemma. This gives us the compatibility required, which
leads to the eigencurve.

Theorem 2.6 (Coleman–Mazur, Buzzard, Pilloni, etc.). There exists a rigid analytic curve C with a locally
finite map w : C → W such that for any κ ∈ W, the fibre of w corresponds to finite slope overconvergent
eigenforms of weight κ.

2.3. Construction. Let (R,M,T, u) be an input tuple. As a motivating example, if M is finite over R and
u is an isomorphism, then the diagram C → Z → SpR is associated to the following morphisms of R-algebras

R→ R[T ]/(F (T ))→ TM
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where F (T ) = det(1− Tu|M), and TM is the image of T in EndR(M). The second map sends T to u−1. In
our case, M is not finite over R, which is why we need some p-adic functional analysis.

First, we construct the spectral variety. The map u : M → M is completely continuous, so we can form
its characteristic power series

F (T ) = det(1− Tu|M) ∈ R[[T ]]

There are two ways of making this precise: using approximation by finite dimensional subspaces as in [Col97]
or using the formal identity F (T ) =

∑∞
n=0 Tr(∧nu)(−T )n and build on a theory of traces as in [Sch02].

In either case, it satisfies the desired properties, and moreover lies in the subring R{{T}} of those series∑∞
i=0 aiT

i satisfying ‖an‖R rn → 0 for all r > 0.
We now define Z ⊆ SpR × A1

rig to be the the vanishing locus of F (T ). Above each point of SpR, the
space Z encodes the reciprocals of the infinitely many non-zero eigenvalues of u. The eigenvariety introduces
a finite cover of this to take care of the other Hecke operators. Classical Fredholm theory tells us to expect
each individual u-eigenspace to be finite dimensional, so we may hope the construction in the motivating
example works over Z.

Let π : Z → SpR be the natural projection. First suppose Y is an affinoid subdomain of Z such that π|Y
is an isomorphism. In this case, O(Y ) = R[T ]/(1− aT ) for some a ∈ R×, so a is the inverse of an eigenvalue
of u. By the definition of Z, we have a factorization F (T ) = (1 − aT )S(T ), where S(t) ∈ R{{T}} is not
divisible by 1−aT . Now consider the operator u−a acting on M . Fredholm theory gives us a decomposition
M = N ⊕ F , where N = ker(u − a) and F = Im(u − a). The two projectors are in the closure of R[f ] in
EndR(M). Moreover, N is finite over R, and u− a is invertible on F . Since T is commutative, it preserves
this decomposition. Let TN be the image of T in EndR(N), then we have a diagram

R→ R[T ]/(1− aT )→ TN

as in the introductory example. This gives a finite morphism Sp TN → Y . Any eigensystem of T with u
acting as a cannot occur in F , so Sp TN is the piece of the eigenvariety above Y .

Similar constructions work if Y is only required to be finite above SpR. We can also drop the surjectivity
requirement and only assume that π|Y is finite above an affinoid subdomain of SpR. The key fact, proven in
[Buz07, Section 4], is that the collection of all such Y form an admissible covering of Z. The proof is based on
a theorem of Conrad which deduces finiteness from quasi-finiteness under certain assumptions. Given this,
it is not hard to glue the pieces above Y together for different Y .
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