
THE THOM ISOMORPHISM THEOREM

SAAD SLAOUI

Abstract. These notes provide a detailed proof of the Thom isomorphism
theorem, which is involved in the construction of the Stiefel-Whitney classes

associated to a vector bundle, following the argument given in Chapter 10

of Milnor-Stasheff. The proof will proceed in a way reminiscent of that of de
Rham’s theorem: we will first establish the result in the case of trivial bundles,

then move from there to formally derive the general case.

1. Introduction

The aim of these notes is to provide a careful proof of the Thom isomorphism
theorem, which may be stated as follows (underlying Z/2 coefficients are assumed
throughout):

Theorem 1.1. Let ξ : E
π−→ B be a vector bundle of rank n. Then there exists a

unique Thom class u ∈ Hn(E,E0), characterized by the property that the image of
u under the map i∗b : Hn(E,E0) → Hn(Fb, (Fb)0) ∼= Z/2 induced by the fiberwise
inclusion ib : (Fb, (Fb)0) → (E,E0) is non-zero for all b ∈ B. Furthermore, taking
cup products with the Thom class induces an isomorphism, for all i ≥ 0:

Φ : Hi(E)
−∪u // Hn+i(E,E0).

Recall that, in the notation of the above theorem, the Thom isomorphism is used
in combination with the ith Steenrod square in defining the ith Stiefel-Whitney class
of the vector bundle ξ:

wi(ξ) := Φ−1Sqi(u) ∈ Hi(B),

where we canonically identify Hi(E) ∼= Hi(B) via the isomorphism induced by the

projection map E
π−→ B. It is thus of great theoretical importance in the develop-

ment of the machinery of characteristic classes.

This theorem may also be seen to be of geometric significance, in that it may be
reinterpreted as providing an isomorphism, for all i ≥ 0:

Hi(B)
∼−→ H̃n+i(Th(ξ)),

where Th(ξ) denotes the Thom space of the bundle ξ, obtained from the total
space E by taking the fiberwise one-point compactification, then identifying all
of the resulting points at infinity. In particular, in the case of the trivial bundle

εn : B×Rn π−→ B, one can see that Th(εn) ∼= ΣnB, and thus the above isomorphism
reduces to the iterated suspension isomorphism:

Hi(B)
∼−→ H̃n+i(ΣnB),
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which is already guaranteed by the properties of singular cohomology. Thus, the
Thom isomorphism theorem can be interpreted as stating that the suspension iso-
morphism is invariant under twisting, in the sense that the Thom space associated
to a vector bundle of rank n is a twisted version of the standard nth suspension of
the base space.

In order to prove Theorem (1.1), we will first establish the result in the case
of the trivial bundle εn, and we will then be in a position to extend the result to
arbitrary vector bundles. Much of the technical subtleties involved in the proof
are contained in the verification of the trivial case, for which we set the ground in
sections 2 and 3. The general case will follow relatively quickly in section 4.

2. Refreshers on the Cup and Cross Products

We start by reviewing a few facts about relative cup products and cross products
in singular cohomology, which we will be needing in our discussion. Recall that given
a space X and cochains ψ ∈ Cm(X), η ∈ Cn(X), we may define their cup product
to the the cochain ψ ∪ η ∈ Cn+m(X) acting on singular chains σ : ∆n+m → X via

(ψ ∪ η)(σ) := ψ(σ|[v0,...,vn])η(σ|[vn,...,vn+m]),

where σ[v0,...,vn], σ[vn,...,vn+m] are the restrictions of σ to the corresponding faces

of ∆n+m = [v0, ..., vn+m], and where the product is taken in Z/2. This operation
factors through the cohomology groups of X and give H∗(X) =

⊕
i≥0H

i(X) the
structure of an associative, graded commutative ring with multiplicative unit the
element 1 ∈ H0(X) evaluating to 1 on every 0-chain, with product given component-
wise by maps

Hn(X)⊗Z/2 H
m(X)

−∪− // Hn+m(X) .

Next, let ψ ∈ Cm(X,A), η ∈ Cn(X,B) be two relative cochains with respect to
opens subsets A,B ⊆ X (meaning for instance that ψ vanishes on all m-chains
whose image is contained entirely in A). Viewing Cm(X,A) ⊆ Cm(X), resp.
Cn(X,B) ⊆ Cn(X) as subsets in the natural way, we observe that the cup product
induces a map at the level of cochains:

Cm(X,A)⊗Z/2 C
n(X,B)

−∪− // Cm+n(X,A) ∩ Cm+n(X,B).

Denoting the intersection in the target as Ĉn+m(X;A,B) := Cm+n(X,A)∩Cm+n(X,B),
one easily verifies that the canonical inclusion of cochain complexes

C∗(X,A ∪B)
l−→ Ĉ∗(X;A,B)

fits into a short exact sequences of chain complexes:

(2.1) 0 // C∗(X,A ∪B)
l // Ĉ∗(X;A,B) // Ĉ∗(A ∪B;A,B) // 0.

Furthermore, the third term of this sequence is acyclic (has vanishing cohomology
in every degree), whence it follows from the LES associated to (2.1) that we get an
isomorphism in cohomology

(2.2) H∗(X,A ∪B) ∼= H∗(Ĉ∗(A ∪B;A,B)).
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We may thus consider the following well-defined relative cup product operation on
cohomology, for all n,m ≥ 0:

Hn(X,A)⊗Z/2 H
m(X,B)

−∪− // Hn+m(X,A ∪B) .

Equipped with this operation, we are in a position to relate the cohomology
rings of two distinct pairs of spaces (X,A), (Y,B). In the following definition,
p1 : X × Y → X, resp. p2 : X × Y → Y denote the standard projection maps.

Definition 2.3. Let (X,A), (Y,B) be pairs of spaces such that A ⊂ X, B ⊂ Y are
open subsets. Given cohomology classes a ∈ Hn(X,A), b ∈ Hm(Y,B), we define
their cross product to be the element a×b ∈ Hn+m(X×Y,A×Y ∪X×B) obtained
under the following composite:

Hn(X,A)⊗R Hm(Y,B)
p∗1⊗p

∗
2 //

−×− ++

Hn(X × Y,A× Y )⊗R Hm(X × Y,X ×B)

−∪−
��

Hn+m(X × Y,A× Y ∪X ×B).

3. Technical Preliminaries

Before moving on to the proof of the Thom isomorphism theorem, we will need
to establish a technical result. Note that in the case of trivial bundles, the Thom

isomorphism reduces to an isomorphism Hi(B×Rn)
−∪u−−−→ Hn+i(B×Rn, B×Rn0 ) for

an appropriate choice of u ∈ Hn(B×Rn, B×Rn0 ), where we write Rn0 := Rn−{0}.
The cross product gives us a map:

H0(B)⊗Z/2 H
n(Rn,Rn0 )

−×− // Hn(B × Rn, B × Rn0 ),

and so our strategy will be to express u as a cross product u = 1 × en, where 1 ∈
H0(B) is the unit and en is a generator of Hn(Rn,Rn0 ), with the latter group readily
seen from the cohomology LES associated to the pair (Rn,Rn0 ) Hn(Rn,Rn0 ) ∼= Z/2
to be free on one generator for each n ≥ 1.

Contemplate the following segment of the cohomology LES associated to the
triple (R,R0,R−), where R− denotes the negative reals:

H0(R,R−) // H0(R0,R−)
δ // H1(R,R0) // H1(R,R−).

Since R,R− are both contractible, we get by exactness that the connecting homo-

morphism H0(R0,R−)
δ−→ H1(R,R0) is an isomorphism. Next, by excision applied

to the pair (R0,R−), we also have an isomorphism

(3.1) H0(R0,R−)
η∗ // H0(R+)),

where R+ denotes the positive reals. Thus we have the following sequence of iso-
morphisms:

H0(R+) H0(R0,R−)
η∗

∼
oo δ

∼
// H1(R,R0),

and we may express the generator of H1(R,R0) as the image of the unit 1 ∈ H0(R+)
under the horizontal composite, e1 := δ(η∗)−1(1). This sleight of hand allows us to
establish the following result:
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Lemma 3.2. Let (X,A) be a pair of spaces, with A ⊂ X open. Then the map

Hm(X,A)
−×e1 // Hm+1(X × R, A× R ∪X × R0)

given by a 7→ a× e1 is an isomorphism for all m ≥ 0.

Proof. We first establish the result for the pair (X, ∅). Consider the following
portion of the cohomology LES associated to the triple (X × R, X × R0, X × R−):

Hm(X × R, X × R−) // Hm(X × R0, X × R−)

δ′

��
Hm+1(X × R, X × R0) // Hm+1(X × R, X × R−)

Since X ×R and X ×R− both deformation retract to X × {−1}, the terms on the
extremities vanish, hence δ′ must be an isomorphism. Similarly to (3.1) above, we
also have an excision isomorphism:

Hm(X × R0, X × R−)
i∗ // Hm(X × R+).

Hence we may contemplate the following diagram for a given a ∈ Hm(X), which is
graded commutative by naturality of the cross product:

H0(R+)

a×−
��

H0(R0,R−)
η∗

∼
oo δ

∼
//

a×−
��

H1(R,R0)

a×−
��

Hm(X) ∼= Hm(X × R+) Hm(X × R0, X × R−)
i∗

∼
oo δ′

∼
// Hm+1(X × R, X × R0),

Since by construction e1 = δη−1(1), it follows from the above that:

a× e1 = a× (δη−1(1)) = ±δ′(i∗)−1(a× 1) = δ′(i∗)−1(−× 1)(a),

i.e. that the map − × e1 can be expressed as a composite of isomorphisms, and
therefore must be an isomorphism.

We now move on to the case of an arbitrary pair (X,A). Taking cross products
at the level of cochains with respect to a representative z ∈ C1(R,R0) of the
cohomology class e1 ∈ H1(R,R0) gives us a graded commutative diagram of short
exact sequences:

0 // Cm(X,A) //

−×z
��

Cm(X) //

−×z
��

Cm(A) //

−×z
��

0

0 // Ĉm+1(X × R;X × R0, A× R) // Cm+1(X × R, X × R0) // Cm+1(A× R, A× R0) // 0,

where the top row induces the cohomology LES associated to the pair (X,A) and the
bottom row corresponds to diagram (2.1) from section 2 above. Further observe that
this diagram is compatible with taking coboundaries since z is a cocycle, hence for
each m ≥ 0 we obtain an induced commutative diagram at the level of cohomology,
using the isomorphism in (2.2):
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Hm(X) //

−×e1

��

Hm(A)
δ //

−×e1

��

Hm+1(X,A)

−×e1

��

// Hm+1(X) //

−×e1

��

Hm+1(A)

−×e1

��
Hm+1(X × R, X × R0) // Hm+1(A× R, A× R0) // Hm+2(X × R, A× R ∪X × R0) Hm+1(X × R, X × R0) // Hm+1(A× R, A× R0).

We may then apply the 5-lemma to infer the result from the above verification of
the case (X, ∅), completing the proof. �

Proposition 3.3. Let (X,A) be a pair of spaces, with A ⊂ X open. Set en :=
e1 × ...× e1 ∈ Hn(Rn,Rn0 ). Then the map

Hm(X,A)
−×en // Hm+n(X × Rn, A× Rn ∪X × Rn0 )

given by a 7→ a× en is an isomorphism for all m ≥ 0.

Proof. Simply observe that, by associativity of the cross product, the above map is
obtained as a composite of isomorphisms:

Hm(X,A)
−×e1 //

−×en

))

Hm+1(X × R, A× R ∪X × R0)

−×e1

��
Hm+2(X × R2, A× R2 ∪X × R2

0)

−×e1

��
:

−×e1

��
Hm+n(X × Rn, A× Rn ∪X × Rn0 ).

�

4. Proof of the Thom Isomorphism Theorem

We are now in a position to prove the Thom isomorphism theorem. The flavor
of the proof is reminiscent of that of the proof of De Rham’s theorem in the style
of chapter 18 of Lee [1], in which the isomorphism Hi

dR(M) ∼= Hi(M ;R) is first
verified for open balls in Rn via the Poincaré lemma, after which one shows that
the De Rham theorem is true for any manifold admitting a basis of opens on which
the De Rham theorem holds, and then proceeds to construct such a basis using an
exhaustion by compact subsets.

We restate the Thom isomorphism theorem here for convenience:

Theorem 4.1. Let ξ : E
π−→ B be a vector bundle of rank n. Then there exists a

unique Thom class u ∈ Hn(E,E0), characterized by the property that the image of
u under the map i∗b : Hn(E,E0) → Hn(Fb, (Fb)0) ∼= Z/2 induced by the fiberwise
inclusion ib : (Fb, (Fb)0) → (E,E0) is non-zero for all b ∈ B. Furthermore, taking
cup products with the Thom class induces an isomorphism, for all i ≥ 0:

(4.2) Φ : Hi(E)
−∪u // Hn+i(E,E0).
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We first establish the theorem for the trivial bundle ξ : B × Rn π−→ B. By
proposition (3.3), we have an isomorphism

H0(B)
−×en // Hn(B × Rn, B × Rn0 ),

so that every element x ∈ Hn(B × Rn, B × Rn0 ) ≡ Hn(E,E0) can be expressed
uniquely in the form x = s× en, where s ∈ H0(B). Now, observe that x is a valid
Thom class for the bundle ξ provided that the restriction of s to each point in B
is non-zero. But this is verified uniquely by the unit element 1 ∈ H0(B), yielding
the existence of a unique Thom class u := 1× en ∈ Hn(E,E0).

It remains to check that the induced map

(4.3) Hi(B × Rn)
−∪u // Hn+i(E,E0)

is an isomorphism. By the Künneth theorem, every element y ∈ Hi(B × Rn) can
be expressed uniquely in the form y = z× 1, where z ∈ Hj(B). Hence, we see that

y ∪ u = (z × 1) ∪ (1× en) = (z ∪ 1)× (1 ∪ en) = z × en = (−× en)(z),

so since the map − × en is an isomorphism it follows that the map in (4.3) is an
isomorphism, as needed.

The idea is now to use the existence of local trivializations for vector bundles to
patch together the Thom classes of local trivializations into global Thom classes,
ensuring in the process that the desired isomorphism (4.2) is preserved. In what

follows, say a vector bundle ξ : E
π−→ B is a Thom bundle is the Thom isomorphism

theorem holds for ξ. Then we have the following intermediary result:

Proposition 4.4. If a vector bundle ξ : E
π−→ B admits a finite open cover

B1, ..., Bk of the base space B such that the restriction to each Bi and each in-
tersection Bij ≡ Bi ∩Bj is a Thom bundle, then ξ is a Thom bundle.

Proof. We establish the case k = 2; the result then follows by induction on k.
Indeed, given an open cover B1, ..., Bk satisfying the above hypothesis, we may
consider the open cover with two components B := Bk, B

′ := ∪k−1i=1Bi, so that
ξ|B , ξ|B′ are both Thom bundles by induction, resp. ξ|B∩B′ = ξ|∪k−1

i=1 (Bk∩Bi)
is a

Thom bundle, whence it follows that ξ is a Thom bundle once the result holds for
k = 2.

So let B = B1 ∪B2 be an open cover of B such that ξB1 : E1 → B1, ξB2 : E2 →
B2, ξB12 : E12 → B12 are Thom bundles. We may then consider the following
relative Mayer-Vietoris LES in cohomology:
(4.5)

... // Hn−1(E12, E12
0 )

δ // Hn(E,E0) // Hn(E1, E1
0)⊕Hn(E2, E2

0) // Hn(E12, E12
0 ) // ...
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By hypothesis, there exist unique Thom classes uk ∈ Hn(Ek, Ek0 ), k = 1, 2. From
the following commutative diagram, for any b ∈ B:

Hn(E1, E1
0)

l∗ ''

l∗

++
Hn(E12, E12

0 ) // Hn(Fb, (Fb)0),

Hn(E2, E2
0)

l∗
77

l∗

33

we see that both restriction l∗u1, l∗u2 satisfy the condition for being a Thom class
on ξ|B12 . By uniqueness, it follows that we must have l∗u1 = l∗u2 = u12, and
hence the pair (u1, u2) is sent to 0 under the rightmost map of (4.5). Hence,
by exactness, there exists an element u ∈ Hn(E,E0) which restricts to u1, resp.
u2 in Hn(E1, E1

0), resp. Hn(E2, E2
0), and which by a similar argument as above

constitutes a valid Thom class for ξ. Uniqueness of such an element u follows by
exactness of (4.5) together with the fact that Hn−1(E12, E12

0 ) = 0. �

Since any vector bundle ξ : E
π−→ B over a compact base space admits a finite

open cover of B by local trivializations, our work so far completes the proof of the
Thom isomorphism theorem for compact spaces. In order to establish the general
case, we resort to a lemma relating the cohomology groups of a space to those of
its compact subsets.

Lemma 4.6. Let C be a direct system under inclusions of compact subsets of

a space B, and let ξ : E
π−→ E0 be a vector bundle. Then the canonical map

Hi(B) → lim←−C H
i(C) is an isomorphism for all i ≥ 0, and similarly Hi(E,E0)

maps isomorphically to lim←−C H
i(π−1(C), π−1(C)0) for all i ≥ 0.

Proof. First observe that in homology, since the topological i-simplex ∆i is com-
pact, every singular i-chain σ : ∆i → B lands in a compact subset σ(∆i) ⊆ B.
Hence, the canonical map lim−→C Hj(C) → Hj(B) is an isomorphism. The result

then follows from the duality of homology and cohomology over a field, together
with the fact that the hom functor is compatible with limits and colimits in the
sense that

HomZ/2(lim−→
C
Hj(C),Z/2) ∼= lim←−

C
HomZ/2(Hj(C),Z/2).

The result for Hi(E,E0)
∼−→ lim←−C(π

−1(C), π−1(C)0) follows similarly. �

Remark 4.7. The validity of the above lemma relies crucially on the fact that
the underlying ring of coefficients Z/2 is a field, giving a direct duality between
homology and cohomology.

Now, since the union of any two compact sets is again compact, the restric-

tion of ξ : E
π−→ B to any component C ⊆ B of the system C is a Thom

bundle, hence admits a Thom class uC ∈ Hn(π−1(C), π−1(C)0). Then, by the
above lemma, there exists a unique element u ∈ Hn(E,E0) which is mapped to
(uC)C∈C ∈ lim←−C H

n(π−1(C), π−1(C)0), and hence which constitutes the unique

Thom class in Hn(E,E0).
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Furthermore, by construction of u, we get for each compact subset C ⊆ B and
for all i ≥ 0 we have a commutative square:

Hi(E)
−∪u //

l∗

��

Hi+n(E,E0)

l∗

��
Hi(π−1(C))

−∪uC // Hi+n(π−1(C), π−1(C)0).

Strapping these together for all C ∈ C, we get an induced commutative square:

Hi(E)
−∪u //

l∗

��

Hi+n(E,E0)

l∗

��
lim←−C H

i(π−1(C))

∏
C(−∪uC) // lim←−C H

i+n(π−1(C), π−1(C)0),

where each vertical map is an isomorphism by the above lemma and where the
horizontal map is an isomorphism by construction, completing the proof of the
general case.
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