- Often in physics, one makes ______, then formulates _____ Using _____, one then attempts to describe the motion of objects over time.
- Newton's laws of motion describe: ______ and ______, for example.
- In Newtonian physics, velocities _____ and there is absolute _____.
- Einstein is a household name, but _____ and ____ also played a major role in discovering Special Relativity (SR).
- A Law in SR: the speed of light c is ______. c is approximately _____ in a vacuum.
- _____ is not absolute in SR.
- The Lorentz Transformation gives us the SR Velocity Addition Formula as follows. Body A moves at a constant velocity a with respect to body C. Body B moves at a constant velocity b with respect to body A. Then:

The Velocity of B Relative to
$$C = \frac{a+b}{1+\frac{ab}{c^2}}$$
.

1. A is a spaceship travelling with velocity a = c/2 with respect to spaceship C. A beam of light B is emitted in the direction of travel of ship A. How fast does ship C observe the beam to be travelling? Explain. What would Newtonian physics predict?

2. If a and b are small compared to c, then what happens? Explain.

• SR, along with mathematics, yields possibly the most famous equation:	
• In General Relativity, Gravity is	

• A _____ is a living creature with (roughly) two spacial degrees of freedom.

• A circle is a _____ dimensional object.

ullet Draw two examples of interesting 2D objects.

• Let X and Y be subspaces of \mathbb{R}^n where X has dimension i, Y has dimension j, and X and Y intersect generically. Then:

Dimension of $X \cap Y = \underline{\hspace{1cm}}$.

• A simple example of this dimension formula in action is: ______.

3. Let X be a line and Y a plane in \mathbb{R}^4 . Find dim $(X \cap Y)$ and $X \cap Y$.

4. Let X and Y both be planes in \mathbb{R}^4 . Find dim $(X \cap Y)$ and $X \cap Y$.

• A knot is a loop tied in some space. Moving and bending of a knot is allowed. Cutting is not allowed.

• A knot can only be tied in \mathbb{R}^n when $n = \underline{\hspace{1cm}}$.

• Draw the unknot and a knotted knot.
5. While on the beach you notice a person down the beach struggling in the water. You
decide to help. Which path do you take to the swimmer?
 Light follows the path that minimizes GR and Mathematics predicted the existence of in 1915, lon
before there was any observational evidence for them. Recommended Reading:
• The Knot Book, Colin Adams, W.H. Freeman and Co., 1994.
• Relativity: The Special and General Theory, A Clear Explanation that Anyone Ca Understand, Albert Einstein, Crown Pub., 1951.
• What is Mathematics? Richard Courant and Herbert Robbins, Oxford Univ. Press 1996.