Moving Through Space with Geometric Algebras

Part I: Adding and Multiplying Vectors

Eric Katerman
The University of Texas at Austin

The Austin Math Circle April 19th, 2009

Introduction

MOTIVATION

Euclidean motion

Simplicity of Geometric Algebra

SCALARS, VECTORS AND BIVECTORS Numbers and Arrows Planar segments

MULTIPLYING VECTORS

Outer product

Inner product and projection

EUCLIDEAN MOTION

- ► The problem: modeling the motion of an object in space
 - ► designing a 3D video game
 - building a robot with arms and legs
- ▶ Basic Euclidean motions: translation and rotations
- ► Today: a mathematical model of rotation

LINEAR ALGEBRA VS. GEOMETRIC ALGEBRA

- ► Traditional linear algebra: vectors are objects and matrices are operations
- ► Rotation using linear algebra:

$$\begin{bmatrix} x^2 + (y^2 + z^2)c & xy(1-c) - zs & xz(1-c) + ys \\ xy(1-c) + zs & y^2 + (x^2 + z^2)c & yz(1-c) - xs \\ xz(1-c) - ys & yz(1-c) + xs & z^2 + (x^2 + y^2)c \end{bmatrix}$$

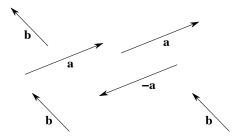
- ► Geometric algebra: scalars, vectors and bivectors are objects and operations!
- ▶ Rotation using geometric algebra: $x \mapsto abxba$

SCALARS

- ► Scalars are numbers: $1, \frac{5}{2}, \pi$
- ▶ We will denote them by Greek letters: α, β, γ
- ► Adding and multiplying:
 - $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ (associative law)
 - $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ (distributive law)
 - $\alpha\beta = \beta\alpha$ (commutative law)

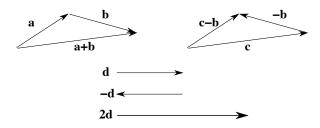
VECTORS

- ► Vectors are arrows: **a**, **b**, **c**
- ▶ $|\mathbf{a}|$ = Length(\mathbf{a}), "line", and orientation
- ▶ $\mathbf{a} = \mathbf{b}$ if $|\mathbf{a}| = |\mathbf{b}|$, $\mathbf{a} \parallel \mathbf{b}$, and same orientation



ADDING AND SCALING VECTORS

Add vectors tip to tail: $\mathbf{a} + \mathbf{b}$ Scale \mathbf{a} by α to get $\alpha \mathbf{a}$: Subtract \mathbf{b} from \mathbf{a} by adding $-\mathbf{b}$ to \mathbf{a} :



BIVECTORS

Generalize "vector" to two dimensions:

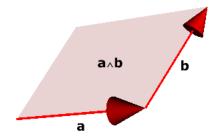
- ► Bivectors are planar segments (parallelograms or flat disks): A, B, C
- ▶ |A| = Area(A), "plane", and orientation
- ▶ A = B if |A| = |B|, $A \parallel B$, and same orientation
- ► (examples on board)

EXERCISE SET 1

- ► Given a and b, compare a + b, (2a) + b, a + (2b), 2(a + b).
- ▶ Draw some planar segments that represent the same bivector as \mathbf{A} . What is $-\mathbf{A}$?
- ► Consider the bivectors **A**, **B**, **C**. Can you add **A** + **B**? What about **A** + **C**?
- ► Challenge: How do you add arbitrary bivectors in the plane? What about in 3-space?

OUTER PRODUCT

- ► First way to multiply vectors: the outer product
- ▶ $\mathbf{a} \wedge \mathbf{b}$ = the parallelogram spanned by \mathbf{a} and \mathbf{b} !

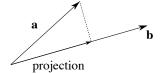


▶ If $\mathbf{a} \parallel \mathbf{b}$, then $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$!

INNER PRODUCT

- ► Second way to multiply vectors: the inner product
- ▶ $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$
- ► Projection:

$$\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right) \mathbf{b} = (|\mathbf{a}| \cos \theta) \frac{\mathbf{b}}{|\mathbf{b}|}$$



EXERCISE SET 2

- ► Given \mathbf{a} , \mathbf{b} , draw and compare $(2\mathbf{a}) \wedge \mathbf{b}$, $\mathbf{a} \wedge (2\mathbf{b})$, and $\mathbf{2}(\mathbf{a} \wedge \mathbf{b})$. Are these all the same bivector?
- ► Explain this fact about the outer product:

if
$$\mathbf{a} \| \mathbf{b}$$
, then $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$

▶ Challenge: given \mathbf{a} , \mathbf{b} , \mathbf{c} , draw and compare $\mathbf{a} \wedge (\mathbf{b} + \mathbf{c})$ and $(\mathbf{a} \wedge \mathbf{b}) + (\mathbf{a} \wedge \mathbf{c})$. Explain the significance of this algebraically. Does the inner product behave the same way?

REVIEW AND PREVIEW

- ▶ Review: scalars $\mathbf{a} \cdot \mathbf{b}$, vectors $\mathbf{a} + \mathbf{b}$, bivectors $\mathbf{a} \wedge \mathbf{b}$.
- ▶ After the break: use the geometric algebra product

$$ab = ???$$

to understand rotation

$$x \mapsto abxba$$