Programming projects

Notes

= You don’t have to do the projects in order! Do whatever seems fun at the moment.

= You don’t have to do the projects at all! They’re just here to inspire you. If you think
of something cool, run with it—and please tell a helper about it, because we love cool
things.

=1 When I say a computer is supposed to input or output a number, with no other details,
I mean for the number to be represented as a tally, like this:

(0]

e]e]
000
0000

W N

Of course, any symbol will work just as well as o!

Basics
C> Suppose your input is a string like this:
| —===>—————— |

Find rules that will make the > travel to the right until it hits the |, turn into a <,
travel to the left until it hits the other |, turn into a >, and so on...

C> Suppose your input is a string like this:
0000 | —===>-=—————- |

Find rules that will make the > bounce back and forth like in the previous project,
but stop after it hits the left wall oooo times.

C> Suppose your input is a string like this:
LTOUTO L Te e T..... T....TT...... T...

Find rules that will make a . become a < if its nearest T is to the left, a > if its nearest
T is to the right, and a | if it’s equal distances between two Ts.

C> Write a computer that takes in a number n and a string of dashes, and turns every
nth dash into a dot.

Multiplication

o> IN Two numbers
ouT The product of the numbers

o> IN A number
ouT The square of the number

o> IN A number n
ouT The sum of the numbers from 1 to n

Numerals

o> IN A number in binary
oUuT The number (as a tally)

o IN A number (as a tally)
oUT The number in binary

C> Write computers that convert back and forth between tallies and

e Maya numerals.

e Roman numerals.

> IN A number in binary
ouT The number in trinary

Division
o> IN A number
ouT The number’s remainder when divided by five

o IN Two numbers
ouT The first number’s remainder when divided by the second

> The Euclidean algorithm is a method for finding the greatest common divisor of two
numbers. It works like this.

Start with a pair of numbers. Subtract the smaller number from the larger number (if
the numbers are equal, subtract either one from the other). Now you have a new pair
of numbers. Keep subtracting the smaller from the larger until one of the numbers
is gone. The remaining number is the greatest common divisor of the numbers you
started with.

Write a computer that finds the greatest common divisor of two numbers.

IN A number
> our The empty string if the number is prime
A non-empty string otherwise

(The last Basics project might be helpful for this.)

Sequences

C® Write a computer that will show you...

e all the numbers,

e all the Fibonacci numbers,

e all the prime numbers,
one by one.

> Write a computer that churns out the never-ending string
0_00_000_0000_00000_000000_

(the ellipsis isn’t part of the string).

C> Take a strip of paper and fold it in half over and over, always folding in the same
direction. Then, open each crease out into a 90° corner, keeping the natural direction
of the crease. The shape you end up with is called a dragon curve.

Folding paper over and over gets difficult really quickly. It would be much easier to
fold a dragon curve if you knew the sequence of left and right folds ahead of time—then
you’d only have to fold one layer of paper.

Write a computer that will show you all the folding sequences for dragon curves.

Trees

IN A string of parentheses
> our The empty string if the parentheses are balanced
A non-empty string otherwise

IN A boolean expression—a tree with “and” or “or” at each node, and “true” or
c> “false” at each leaf
ouT The value of the expression

