# Midterm exam with solutions 

Thursday, October 7, 14:00

## Problem 1. Define the terms "greatest common divisor" and "coprime".

Solution 1. The greatest common divisor $(a, b)$ of integers $a, b$, not both 0 , is the greatest positive integer $d \in \mathbb{Z}_{+}$such that $d \mid a$ and $d \mid b$. The greatest common divisor $(0,0)$ of 0 and itself is 0 .

Two integers $a, b$ are coprime if $(a, b)=1$.
Problem 2. Let $a$ and $b$ be positive integers. Show that

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b,
$$

where $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ are the greatest common divisor and the least common multiple of $a$ and $b$.

Solution 2. By the Fundamental Theorem of Number Theory, $a$ and $b$ can be written as products of prime powers

$$
a=p_{1}^{i_{1}} \cdots p_{n}^{i_{n}} \quad b=p_{1}^{j_{1}} \cdots p_{n}^{j_{n}}
$$

where $p_{1}, \ldots, p_{n}$ are distinct primes and $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \geq 0$. We proved in class that then

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left\{i_{1}, j_{1}\right\}} \cdots p_{n}^{\min \left\{i_{n}, j_{n}\right\}}, \quad \operatorname{lcm}(a, b)=p_{1}^{\max \left\{i_{1}, j_{1}\right\}} \cdots p_{n}^{\max \left\{i_{n}, j_{n}\right\}}
$$

Now consider every prime separately. We have

$$
p_{k}^{\min \left\{i_{k}, j_{k}\right\}} \cdot p_{k}^{\max \left\{i_{k}, j_{k}\right\}}=p_{k}^{\min \left\{i_{k}, j_{k}\right\}+\max \left\{i_{k}, j_{k}\right\}}=p_{k}^{i_{k}+j_{k}}=p_{k}^{i_{k}} \cdot p_{k}^{j_{k}}
$$

for every $k \in\{1, \ldots, n\}$. So $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$.

Problem 3. The Fibonnacci numbers $f_{1}, f_{2}, f_{3}, \ldots$ are recursively defined by

$$
f_{1}=1, \quad f_{2}=1, \quad f_{n+2}=f_{n+1}+f_{n} \forall n \in \mathbb{N}
$$

Show that $\sum_{i=1}^{n} f_{i}^{2}=f_{n} f_{n+1}$ for every $n \in \mathbb{N}$.
Solution 3. We use induction over $n$, starting at $n=1$. For the base step, we just verify that $\sum_{i=1}^{1} f_{i}^{2}=f_{1}^{2}=1=f_{1} f_{2}$.
For the inductive step, assume that the equality $\sum_{i=1}^{n} f_{i}^{2}=f_{n} f_{n+1}$ is known. We want to show $\sum_{i=1}^{n+1} f_{i}^{2}=f_{n+1} f_{n+2}$. This follows from the computation

$$
f_{n+1} f_{n+2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n} f_{n+1}+f_{n+1}^{2}=\sum_{i=1}^{n} f_{i}^{2}+f_{n+1}^{2}=\sum_{i=1}^{n+1} f_{i}^{2}
$$

where we used the induction hypothesis in the third step.

Problem 4. For which integers $c \in \mathbb{Z}$ does the equation

$$
9 x=c \bmod 75
$$

have a solution $x \in \mathbb{Z} / 75 \mathbb{Z}$ ? In the cases which have solutions, find all of them.
Solution 4. Since $(9,75)=3$ the equation has a solution if and only if $3 \mid c$, and has 3 solutions in that case.

Assume that $3 \mid c$, then we can write $c=3 n$ for some integer $n$. Since

$$
9 \cdot(-8) \bmod 75=-72 \bmod 75=3 \bmod 75
$$

$[-8 n]$ is a solution of the equation. The other two solutions are $[25-8 n]$ and $[50-8 n]$.
Problem 5. Let $p>3$ be a prime number. Show that

$$
2^{p-2}+3^{p-2}+6^{p-2} \bmod p=1 \bmod p .
$$

Solution 5. Let $x=\left[2^{p-2}+3^{p-2}+6^{p-2}\right] \in \mathbb{Z} / p \mathbb{Z}$. Then
$[6] x=[6] \cdot[2]^{p-2}+[6] \cdot[3]^{p-2}+[6] \cdot[6]^{p-2}=[3] \cdot[2]^{p-1}+[2] \cdot[2]^{p-1}+[6]^{p-1}=[3]+[2]+[1]=[6]$,
using Fermat's little theorem in the third step. Since $p$ and 6 are coprime, $[6]$ is invertible. So $x=[1]$.

