
Fall 2021 – Math 328K – 55385

Final exam

Thursday, December 9, 9:00

• Write your name clearly readable on the top of every page you write!

• Prove every statement you write.

• You can use all theorems from the lectures and homeworks without giving a proof.

• Do not use a red pen.

• No phones, calculators, books, notes, etc. are permitted.

• Good luck!
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Problem 1. Choose all right answers (could be none, one or more than one).

a) Which of the following statements are true for every ring R? (0 and 1 are the neutral
elements for addition and multiplication in R)

� xy = yx for all x, y ∈ R.

� For all x ∈ R, there exists k ∈ N such that xk = 1.

� R× 6= ∅.

� If x, y, z ∈ R, x 6= 0, and xy = xz, then y = z.

� If n ∈ N, x ∈ R, and 1− x2 ∈ R×, then
∑n−1

k=0 x
2k = (1− x2)−1(1− x2n).

b) What is the value of the continued fraction [6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, . . . ]?

�
√
10

� π

�
√
7/2

�
√
11 + 3

� (
√
5 + 1)/2

c) Which of the following statements are true?

� There is a primitive root in Z/4Z.

� If x ∈ Z/pZ, p prime, then a power of x is a primitive root.

� If x ∈ Z/pZ, p prime, then x is a power of a primitive root.

� If p is prime and d | p− 1, then Z/pZ has an element of order d.

� If p is prime and a ∈ (Z/pZ)×, there exists b ∈ (Z/pZ)× such that a = b5.

d) Bob sent the encrypted message LXYARVN, which he had encrypted using a Caesar
cipher. What could the plaintext be?

� DIVISOR

� QUOTIENT

� INTEGER

� COPRIME

� EXPONENTIATION
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Problem 2. Let x, y ∈ Z be coprime. Show that (x+ 2y, y + 2x) is either 1 or 3.

Solution 2. Recall that (a, b) = (a+ bc, b) for all a, b, c ∈ Z. Therefore

(x+2y, y+2x) = (x+2y−2(y+2x), y+2x) = (−3x, y+2x) = (3x, y+2x−3x) = (3x, y−x).

Now assume p is a common prime divisor of 3x and y − x. Then either p | 3 or p | x.
In the latter case p also divides y = x + (y − x), contradicting the assumption that
(x, y) = 1. So p | 3 or, equivalently, p = 3. Hence we know that the only prime which
can be a common divisor of 3x and y − x is 3.

So (3x, y − x) = 3k for some k. If k ≥ 2, then 9 | 3x, so 3 | x. By the same argument
as before this implies 3 | y and leads to a contradiction. Consequently, (x+ 2y, y + 2x)
can only be 1 or 3.

Problem 3.

a) Which integers up to 100 have exactly 10 positive divisors (including 1 and itself)?

b) Are there integers up 100 with more than 10 positive divisors?

Solution 3.

a) Let τ be the number of divisors function, as defined in class. It is multiplicative, so
if n = pi11 . . . p

ik
k for distinct primes pj and exponents ij ≥ 1, then

τ(n) = (i1 + 1) · · · (ik + 1).

There are only two possibilities to get τ(n) = 10 = 2 ·5: either n = p9 for some prime
p, or n = pq4 for two different primes p and q. The first option does not occur for
n ≤ 100 since 29 = 512. In the second case, if q ≥ 3 then pq4 ≥ 2 · 34 = 162 > 100.
So q = 2, i.e. n = 16p for some odd prime p, which has to be 3 or 5. So the only two
numbers under 100 with exactly 10 divisors are 48 and 80.

b) No integer up to 100 has 11 divisors (1024 is the lowest number with 11 divisors).
However some numbers have 12 divisors: similarly to the above, the decompositions
12 = 6 · 2 = 4 · 3 = 3 · 2 · 2 suggest integers of the form p11, p5q, p3q2 or p2qr for
pairwise different primes p, q, r. The numbers of this form below 100 are:

25 · 3 = 96, 23 · 32 = 72, 22 · 3 · 5 = 60, 22 · 3 · 7 = 84, 32 · 2 · 5 = 90.

Of course, to solve the problem it was enough to find one example.
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Problem 4. A natural number n ∈ N is called perfect if it is equal to the sum of its
positive divisors except itself, or equivalently if σ(n) = 2n. (Recall that σ(n) is the sum
of positive divisors of n including n, a multiplicative function.)

Show for k ∈ N that the number

n = 2k−1(2k − 1)

is perfect if and only if 2k − 1 is prime.

.

Solution 4. Since σ is a multiplicative function and σ(pk) = pk+1−1
p−1 we can compute

σ(n) = σ(2k−1)σ(2k − 1) = (2k − 1)σ(2k − 1).

So σ(n) = 2n is equivalent to the equation

(2k − 1)σ(2k − 1) = 2k(2k − 1) ⇔ σ(2k − 1) = 2k,

that is the equation σ(p) = p+ 1, if we write p = 2k − 1. Of course p and 1 are always
divisors of p, so σ(p) = p + 1 if and only if there are no other divisors, that is if p is
prime. This shows that n is perfect if and only if p is prime.

Problem 5. Let n = p1 · · · pk be a product of distinct odd primes and let x ∈ Z/nZ.
Show that

xφ(n)+1 = x.

Solution 5. For each i ∈ {1, . . . , k} we have φ(pi) | φ(n). Say φ(n) = φ(pi)di for some
di ∈ Z+. Then

xφ(n)+1 mod pi = x · (xφ(pi))di mod pi = (x mod pi) · ((x mod pi)
φ(pi))di .

If x mod pi ∈ (Z/piZ)× then this equals x mod pi by Euler’s theorem. On the other
hand, if x mod pi 6∈ (Z/piZ)×, then x mod pi = 0 mod pi, and we still have xφ(n)+1 mod
pi = x mod pi.

We showed that (xφ(n)+1 − x) mod pi = 0 mod pi for each i. By the Chinese Remainder
Theorem, this implies that xφ(n)+1 − x = 0 mod n, that is xφ(n)+1 = x.
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Problem 6. Consider the equation

x4 + 2x+ 5 = 0.

How many different solutions does it have in Z/500Z? (you don’t need to find the
solutions, just their number!)

Here is a table of the squares, cubes, and fourth powers of 1–digit numbers:

x 0 1 2 3 4 5 6 7 8 9
x2 0 1 4 9 16 25 36 49 64 81
x3 0 1 8 27 64 125 216 343 512 729
x4 0 1 16 81 256 625 1296 2401 4096 6565

Solution 6. Let f(x) = x4 + 2x+ 5. We compute

f(0) = 5

f(1) = 8

f(2) = 25

f(3) = 92

f(4) = 269

So there are two solutions in Z/5Z, namely [0] and [2]. Since [f ′(0)]5 = [2]5 and [f ′(2)]5 =
[34]5 Hensel’s Lemma shows that there is a unique lift of each of these solutions to Z/25Z,
and also to Z/125Z.

On the other hand, there two solutions in Z/4Z, [1] and [3]. Since 500 = 4 · 125 the
Chinese Remainder Theorem tells us that the equation has 2 ·2 = 4 solutions in Z/500Z.

Problem 7. Let a,m ∈ Z+, a > 1, and let x = [a]m ∈ Z/mZ.

a) Assuming that m = an − 1 for some n ∈ N, show that ord(x) = n.

b) Assuming that m = an + 1 for some n ∈ N, show that ord(x) = 2n.

Solution 7.

a) Let k = ord(x). First, xn = [an]m = [m + 1]m = [1]m, so k ≤ n. Next, [ak]m = [1]m,
so m | ak − 1. In particular an − 1 = m ≤ ak − 1. Since a > 1 this implies n ≤ k.

b) Again let k = ord(x). Now xn = [an]m = [m − 1]m = [−1]m. Then x2n = [−1]2m =
[1]m, so k | 2n. As before [ak]m = [1]m, so m | ak − 1. In particular an ≤ an + 1 =
m ≤ ak − 1 ≤ ak. This implies k ≥ n. Together with k | 2n we know that k is either
n or 2n. If k = n then [−1]m = xn = [1]m, which is only possible if m = 2. This
would contradict the assumption a > 1. So k = 2n.
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