## Final exam

Thursday, December 9, 9:00

- Write your name clearly readable on the top of every page you write!
- Prove every statement you write.
- You can use all theorems from the lectures and homeworks without giving a proof.
- Do not use a red pen.
- No phones, calculators, books, notes, etc. are permitted.
- Good luck!

Problem 1. Choose all right answers (could be none, one or more than one).
a) Which of the following statements are true for every ring $R$ ? ( 0 and 1 are the neutral elements for addition and multiplication in $R$ )$x y=y x$ for all $x, y \in R$.For all $x \in R$, there exists $k \in \mathbb{N}$ such that $x^{k}=1$.
$\boxtimes R^{\times} \neq \varnothing$.If $x, y, z \in R, x \neq 0$, and $x y=x z$, then $y=z$.
$\boxtimes$ If $n \in \mathbb{N}, x \in R$, and $1-x^{2} \in R^{\times}$, then $\sum_{k=0}^{n-1} x^{2 k}=\left(1-x^{2}\right)^{-1}\left(1-x^{2 n}\right)$.
b) What is the value of the continued fraction $[6,3,6,3,6,3,6,3,6,3,6, \ldots]$ ?$\sqrt{10}$$\pi$$\sqrt{7} / 2$
$\boxtimes \sqrt{11}+3$$(\sqrt{5}+1) / 2$
c) Which of the following statements are true?
$\boxtimes$ There is a primitive root in $\mathbb{Z} / 4 \mathbb{Z}$.If $x \in \mathbb{Z} / p \mathbb{Z}, p$ prime, then a power of $x$ is a primitive root.If $x \in \mathbb{Z} / p \mathbb{Z}, p$ prime, then $x$ is a power of a primitive root.
$\boxtimes$ If $p$ is prime and $d \mid p-1$, then $\mathbb{Z} / p \mathbb{Z}$ has an element of order $d$.If $p$ is prime and $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, there exists $b \in(\mathbb{Z} / p \mathbb{Z})^{\times}$such that $a=b^{5}$.
d) Bob sent the encrypted message LXYARVN, which he had encrypted using a Caesar cipher. What could the plaintext be?DIVISORQUOTIENTINTEGER
$\boxtimes$ COPRIMEEXPONENTIATION

Problem 2. Let $x, y \in \mathbb{Z}$ be coprime. Show that $(x+2 y, y+2 x)$ is either 1 or 3 .

Solution 2. Recall that $(a, b)=(a+b c, b)$ for all $a, b, c \in \mathbb{Z}$. Therefore
$(x+2 y, y+2 x)=(x+2 y-2(y+2 x), y+2 x)=(-3 x, y+2 x)=(3 x, y+2 x-3 x)=(3 x, y-x)$.
Now assume $p$ is a common prime divisor of $3 x$ and $y-x$. Then either $p \mid 3$ or $p \mid x$. In the latter case $p$ also divides $y=x+(y-x)$, contradicting the assumption that $(x, y)=1$. So $p \mid 3$ or, equivalently, $p=3$. Hence we know that the only prime which can be a common divisor of $3 x$ and $y-x$ is 3 .

So $(3 x, y-x)=3^{k}$ for some $k$. If $k \geq 2$, then $9 \mid 3 x$, so $3 \mid x$. By the same argument as before this implies $3 \mid y$ and leads to a contradiction. Consequently, $(x+2 y, y+2 x)$ can only be 1 or 3 .

## Problem 3.

a) Which integers up to 100 have exactly 10 positive divisors (including 1 and itself)?
b) Are there integers up 100 with more than 10 positive divisors?

## Solution 3.

a) Let $\tau$ be the number of divisors function, as defined in class. It is multiplicative, so if $n=p_{1}^{i_{1}} \ldots p_{k}^{i_{k}}$ for distinct primes $p_{j}$ and exponents $i_{j} \geq 1$, then

$$
\tau(n)=\left(i_{1}+1\right) \cdots\left(i_{k}+1\right)
$$

There are only two possibilities to get $\tau(n)=10=2 \cdot 5$ : either $n=p^{9}$ for some prime $p$, or $n=p q^{4}$ for two different primes $p$ and $q$. The first option does not occur for $n \leq 100$ since $2^{9}=512$. In the second case, if $q \geq 3$ then $p q^{4} \geq 2 \cdot 3^{4}=162>100$. So $q=2$, i.e. $n=16 p$ for some odd prime $p$, which has to be 3 or 5 . So the only two numbers under 100 with exactly 10 divisors are 48 and 80 .
b) No integer up to 100 has 11 divisors (1024 is the lowest number with 11 divisors). However some numbers have 12 divisors: similarly to the above, the decompositions $12=6 \cdot 2=4 \cdot 3=3 \cdot 2 \cdot 2$ suggest integers of the form $p^{11}, p^{5} q, p^{3} q^{2}$ or $p^{2} q r$ for pairwise different primes $p, q, r$. The numbers of this form below 100 are:

$$
2^{5} \cdot 3=96, \quad 2^{3} \cdot 3^{2}=72, \quad 2^{2} \cdot 3 \cdot 5=60, \quad 2^{2} \cdot 3 \cdot 7=84, \quad 3^{2} \cdot 2 \cdot 5=90
$$

Of course, to solve the problem it was enough to find one example.

Problem 4. A natural number $n \in \mathbb{N}$ is called perfect if it is equal to the sum of its positive divisors except itself, or equivalently if $\sigma(n)=2 n$. (Recall that $\sigma(n)$ is the sum of positive divisors of $n$ including $n$, a multiplicative function.)

Show for $k \in \mathbb{N}$ that the number

$$
n=2^{k-1}\left(2^{k}-1\right)
$$

is perfect if and only if $2^{k}-1$ is prime.

Solution 4. Since $\sigma$ is a multiplicative function and $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$ we can compute

$$
\sigma(n)=\sigma\left(2^{k-1}\right) \sigma\left(2^{k}-1\right)=\left(2^{k}-1\right) \sigma\left(2^{k}-1\right)
$$

So $\sigma(n)=2 n$ is equivalent to the equation

$$
\left(2^{k}-1\right) \sigma\left(2^{k}-1\right)=2^{k}\left(2^{k}-1\right) \quad \Leftrightarrow \quad \sigma\left(2^{k}-1\right)=2^{k}
$$

that is the equation $\sigma(p)=p+1$, if we write $p=2^{k}-1$. Of course $p$ and 1 are always divisors of $p$, so $\sigma(p)=p+1$ if and only if there are no other divisors, that is if $p$ is prime. This shows that $n$ is perfect if and only if $p$ is prime.

Problem 5. Let $n=p_{1} \cdots p_{k}$ be a product of distinct odd primes and let $x \in \mathbb{Z} / n \mathbb{Z}$. Show that

$$
x^{\phi(n)+1}=x .
$$

Solution 5. For each $i \in\{1, \ldots, k\}$ we have $\phi\left(p_{i}\right) \mid \phi(n)$. Say $\phi(n)=\phi\left(p_{i}\right) d_{i}$ for some $d_{i} \in \mathbb{Z}_{+}$. Then

$$
x^{\phi(n)+1} \bmod p_{i}=x \cdot\left(x^{\phi\left(p_{i}\right)}\right)^{d_{i}} \bmod p_{i}=\left(x \bmod p_{i}\right) \cdot\left(\left(x \bmod p_{i}\right)^{\phi\left(p_{i}\right)}\right)^{d_{i}} .
$$

If $x \bmod p_{i} \in\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{\times}$then this equals $x \bmod p_{i}$ by Euler's theorem. On the other hand, if $x \bmod p_{i} \notin\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{\times}$, then $x \bmod p_{i}=0 \bmod p_{i}$, and we still have $x^{\phi(n)+1} \bmod$ $p_{i}=x \bmod p_{i}$.

We showed that $\left(x^{\phi(n)+1}-x\right) \bmod p_{i}=0 \bmod p_{i}$ for each $i$. By the Chinese Remainder Theorem, this implies that $x^{\phi(n)+1}-x=0 \bmod n$, that is $x^{\phi(n)+1}=x$.

Problem 6. Consider the equation

$$
x^{4}+2 x+5=0 .
$$

How many different solutions does it have in $\mathbb{Z} / 500 \mathbb{Z}$ ? (you don't need to find the solutions, just their number!)

Here is a table of the squares, cubes, and fourth powers of 1-digit numbers:

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x^{2}$ | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
| $x^{3}$ | 0 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 |
| $x^{4}$ | 0 | 1 | 16 | 81 | 256 | 625 | 1296 | 2401 | 4096 | 6565 |

Solution 6. Let $f(x)=x^{4}+2 x+5$. We compute

$$
\begin{aligned}
& f(0)=5 \\
& f(1)=8 \\
& f(2)=25 \\
& f(3)=92 \\
& f(4)=269
\end{aligned}
$$

So there are two solutions in $\mathbb{Z} / 5 \mathbb{Z}$, namely $[0]$ and $[2]$. Since $\left[f^{\prime}(0)\right]_{5}=[2]_{5}$ and $\left[f^{\prime}(2)\right]_{5}=$ [34] ${ }_{5}$ Hensel's Lemma shows that there is a unique lift of each of these solutions to $\mathbb{Z} / 25 \mathbb{Z}$, and also to $\mathbb{Z} / 125 \mathbb{Z}$.

On the other hand, there two solutions in $\mathbb{Z} / 4 \mathbb{Z}$, [1] and [3]. Since $500=4 \cdot 125$ the Chinese Remainder Theorem tells us that the equation has $2 \cdot 2=4$ solutions in $\mathbb{Z} / 500 \mathbb{Z}$.

Problem 7. Let $a, m \in \mathbb{Z}_{+}, a>1$, and let $x=[a]_{m} \in \mathbb{Z} / m \mathbb{Z}$.
a) Assuming that $m=a^{n}-1$ for some $n \in \mathbb{N}$, show that $\operatorname{ord}(x)=n$.
b) Assuming that $m=a^{n}+1$ for some $n \in \mathbb{N}$, show that $\operatorname{ord}(x)=2 n$.

## Solution 7.

a) Let $k=\operatorname{ord}(x)$. First, $x^{n}=\left[a^{n}\right]_{m}=[m+1]_{m}=[1]_{m}$, so $k \leq n$. Next, $\left[a^{k}\right]_{m}=[1]_{m}$, so $m \mid a^{k}-1$. In particular $a^{n}-1=m \leq a^{k}-1$. Since $a>1$ this implies $n \leq k$.
b) Again let $k=\operatorname{ord}(x)$. Now $x^{n}=\left[a^{n}\right]_{m}=[m-1]_{m}=[-1]_{m}$. Then $x^{2 n}=[-1]_{m}^{2}=$ $[1]_{m}$, so $k \mid 2 n$. As before $\left[a^{k}\right]_{m}=[1]_{m}$, so $m \mid a^{k}-1$. In particular $a^{n} \leq a^{n}+1=$ $m \leq a^{k}-1 \leq a^{k}$. This implies $k \geq n$. Together with $k \mid 2 n$ we know that $k$ is either $n$ or $2 n$. If $k=n$ then $[-1]_{m}=x^{n}=[1]_{m}$, which is only possible if $m=2$. This would contradict the assumption $a>1$. So $k=2 n$.

