Fall 2021 – Math 328K – 55385

Homework 1

due Tuesday, September 7, 14:00

Problem 1. Show that, for all sets X, Y and Z,

- 1. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z),$
- 2. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z),$
- 3. $X \setminus (X \setminus Y) = X \cap Y$,
- 4. $X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z) = (X \setminus Y) \setminus Z$,
- 5. $X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z).$

Problem 2. Using induction, show that for all $n \in \mathbb{N}$ we have

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Problem 3. Show that $2^n \ge n^2$ for every integer $n \ge 4$.

Problem 4. Let R be an ordered ring with $R_+ \subset R$ its set of positive elements. Derive from the axioms that

- a) $(-a) \cdot (-b) = ab$ for all $a, b \in R$,
- b) $a \cdot a > 0$ for all $a \in R$ unless a = 0,
- c) if $a, b, c \in R$ with a > b and b > c, then a > c.

Problem 5. Let R be a ring and $r \in R$. Show that

$$(r-1)\sum_{k=0}^{n} r^{k} = r^{n+1} - 1.$$

In particular, if R is \mathbb{Q} or \mathbb{R} or \mathbb{C} and $r \neq 1$, then

$$\sum_{k=0}^{n} r^{k} = \frac{r^{n+1} - 1}{r - 1}.$$