## Homework 3

due Tuesday, September 21, 14:00

Problem 1. How many integer solutions $x, y \in \mathbb{Z}$ do the following equations have? If there is at least one solution, find an example.
a) $60 x+18 y=97$
b) $37 x+1000010000100001 y=0$
c) $14541 x+1367631 y=13566531$

Problem 2. Let $a, b$ be positive integers such that $a^{2} \mid b^{2}$. Show that $a \mid b$.

Problem 3. Denote by $p_{n}$ be the $n$-th prime ( $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ ). Show that $p_{n} \leq 2^{2^{n-1}}$ for every $n \in \mathbb{N}$. Conclude that there are at least $n+1$ primes less than $2^{2^{n}}$ for every $n \in \mathbb{N}$.

Hint: Look at Euclid's proof of the infinitude of primes.

Problem 4. Let $p \neq q$ be prime numbers and $a$ be an integer such that $p \mid a$ and $q \mid a$. Show that $p q \mid a$. Find a counterexample if either $p$ or $q$ is not prime.

Problem 5. Let $a, b, c \in \mathbb{Z}$ and write $d=(a, b)$. We proved in class that the equation $a x+b y=c$ has an integer solution if and only if $d \mid c$.

Now assume that $d \mid c$, and let $s, t$ be a pair of Bezout coefficients for $a$ and $b$, so that $a s+b t=d$. Show that the set of all solutions $(x, y)$ of $a x+b y=c$ is

$$
\left\{\left.\left(\frac{c s-n b}{d}, \frac{c t+n a}{d}\right) \right\rvert\, n \in \mathbb{Z}\right\} .
$$

