Fall 2021 - Math 328K - 55385

Homework 4

due Tuesday, September 28, 14:00

Problem 1. Which pairs $(a, b) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$have $\operatorname{gcd}(a, b)=18$ and $\operatorname{lcm}(a, b)=540$?
Problem 2. Show that there are no integer solutions to $x^{2}+y^{2}=1000003$.
Problem 3. Find all integer solutions (x, y, z) to the equation

$$
2 x+3 y+4 z=5
$$

Which ones have $x, y, z \geq 0$?

Problem 4. To understand the multiplication operation on $\mathbb{Z} / m \mathbb{Z}$ better, it can be helpful to compile a multiplication table, that is to list the product $x \cdot y$ for all pairs $x, y \in \mathbb{Z} / m \mathbb{Z}$. To do this, we should fix a single representative for every congruence class, for example by using the least non-negative representatives. For example, the multiplication table for $\mathbb{Z} / 3 \mathbb{Z}$ would look like this (for example $[2]_{3} \cdot[2]_{3}=[4]_{3}=[1]_{3}$):

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Create a multiplication table for $\mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 5 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$. Do you see interesting patterns?

Problem 5. Let $m \in \mathbb{Z}_{+}$be composite. Show that $\mathbb{Z} / m \mathbb{Z}$ is not an integral domain.

Problem 6. Compute the following expressions. Give the answer as a least nonnegative residue. You can (and should!) do this without a calculator, and write down intermediate steps.
a) $2^{6} \bmod 11$
b) $2^{12} \bmod 11$
c) $5^{1030} \bmod 3$
d) $78^{3} \bmod 3$
e) $(1!+2!+\cdots+10!) \bmod 5$
f) $(1!+2!+\cdots+100!) \bmod 15$

