Homework 5

due Tuesday, October 5, 14:00

Problem 1. Find all solutions in $\mathbb{Z} / 243 \mathbb{Z}$ to the following equations:
a) $18 x=27$,
b) $3 x=3$,
c) $5 x=17$,
d) $6 x=19$.

Is it a valid strategy to simplify such an equation by dividing both sides by the greatest common divisor, for example replacing $18 x=27$ by $2 x=3$? Why/why not?

Problem 2. Let p be an odd prime and $a \in \mathbb{Z} / p \mathbb{Z}$ with $a \neq 0 \bmod p$. A square root of a is a solution $x \in \mathbb{Z} / p \mathbb{Z}$ of the equation $x^{2}=a$.
a) Show that every $a \in \mathbb{Z} / p \mathbb{Z} \backslash\{0 \bmod p\}$ has either none or exactly two square roots.
b) Conclude that $\mathbb{Z} / p \mathbb{Z}$ has exactly two elements which are their own inverses.
c) Find the square roots of all elements of $\mathbb{Z} / 7 \mathbb{Z}$, if they exist.
d) Is the statement of a) still true if p is not prime?

Problem 3. Show that the equation $x^{2}=1$ has one solution in $\mathbb{Z} / 2 \mathbb{Z}$, two solutions in $\mathbb{Z} / 4 \mathbb{Z}$ and four solutions in $\mathbb{Z} / 2^{k} \mathbb{Z}$ for all integers $k>2$.

Problem 4. Let $a, b, c \in \mathbb{N}$ with

$$
a \bmod c=b \bmod c .
$$

Show that

$$
\left(2^{a}-1\right) \bmod \left(2^{c}-1\right)=\left(2^{b}-1\right) \bmod \left(2^{c}-1\right)
$$

Problem 5. Find inverses of [1], [2], [3], [4] and [5] in $\mathbb{Z} / 8512 \mathbb{Z}$, if they exist.

