Fall 2021 – Math 328K – 55385

Homework 5

due Tuesday, October 5, 14:00

Problem 1. Find all solutions in $\mathbb{Z}/243\mathbb{Z}$ to the following equations:

- a) 18x = 27,
- b) 3x = 3,
- c) 5x = 17,
- d) 6x = 19.

Is it a valid strategy to simplify such an equation by dividing both sides by the greatest common divisor, for example replacing 18x = 27 by 2x = 3? Why/why not?

Problem 2. Let p be an odd prime and $a \in \mathbb{Z}/p\mathbb{Z}$ with $a \neq 0 \mod p$. A square root of a is a solution $x \in \mathbb{Z}/p\mathbb{Z}$ of the equation $x^2 = a$.

- a) Show that every $a \in \mathbb{Z}/p\mathbb{Z} \setminus \{0 \mod p\}$ has either none or exactly two square roots.
- b) Conclude that $\mathbb{Z}/p\mathbb{Z}$ has exactly two elements which are their own inverses.
- c) Find the square roots of all elements of $\mathbb{Z}/7\mathbb{Z}$, if they exist.
- d) Is the statement of a) still true if p is not prime?

Problem 3. Show that the equation $x^2 = 1$ has one solution in $\mathbb{Z}/2\mathbb{Z}$, two solutions in $\mathbb{Z}/4\mathbb{Z}$ and four solutions in $\mathbb{Z}/2^k\mathbb{Z}$ for all integers k > 2.

Problem 4. Let $a, b, c \in \mathbb{N}$ with

 $a \mod c = b \mod c$.

Show that

$$(2^{a} - 1) \mod (2^{c} - 1) = (2^{b} - 1) \mod (2^{c} - 1).$$

Problem 5. Find inverses of [1], [2], [3], [4] and [5] in $\mathbb{Z}/8512\mathbb{Z}$, if they exist.