Fall 2021 - Math 328K - 55385

Homework 6

due Thursday, October 14, 14:00
Problem 1. Using Fermat's little theorem, find the least positive residue of $2^{\left(10^{6}\right)} \bmod -$ ulo 17.r

Problem 2. Show that, other than with ISBN-10, the check digit used for ISBN-13 does not protect against an arbitrary transposition of digits. Which transpositions can it detect?

Problem 3. Show that, if p is an odd prime, then

$$
1^{2} \cdot 3^{2} \cdots(p-4)^{2} \cdot(p-2)^{2} \equiv(-1)^{(p+1) / 2} \quad(\bmod p)
$$

Problem 4. You probably know that a positive integer is divisible by 3 or 9 if the sum of its digits is divisible by 3 or 9 , respectively. The reason for this is that 10 mod $3=1 \bmod 3$ and $10 \bmod 9=1 \bmod 9:$ suppose that the integer $x \in \mathbb{Z}_{+}$has digits $x_{0}, x_{1}, \ldots, x_{n}$, ordered from the least significant to most significant, that is

$$
x=\sum_{i=0}^{n} x_{i} \cdot 10^{i} .
$$

Then

$$
x \bmod 3=\sum_{i=0}^{n}\left(x_{i} \bmod 3\right)(10 \bmod 3)^{i}=\sum_{i=0}^{n}\left(x_{i} \bmod 3\right)(1 \bmod 3)^{i}=\sum_{i=0}^{n} x_{i} \bmod 3 .
$$

So x is divisible by 3 if and only if $\sum_{i=0}^{n} x_{i}$ is.
a) Find a test like this for divisibility by 11 and divisibility by 101 .
b) By the same method, try to find a test for divisibility by 5 and by 15 .
c) This is an alternative way to construct a "general" divisibility test. Let $d \in \mathbb{Z}_{+}$with $(d, 10)=1$ and let $e \in \mathbb{Z}$ such that $[e]_{d}$ is an inverse of $[10]_{d}$. Show that $d \mid x$ if and only if $d \mid x^{\prime}$, where

$$
x^{\prime}=\frac{x-x_{0}}{10}+e x_{0} .
$$

Iterating this gives a sequence $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots$ whose terms are eventually small enough to check for divisibility directly.

Problem 5. Let $m \in \mathbb{Z}_{+}, m>2$, and let $(\mathbb{Z} / m \mathbb{Z})^{\times}=\{[a] \mid(a, m)=1\}$ be the subset of all invertible elements in $\mathbb{Z} / m \mathbb{Z}$. Show that

$$
\sum_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=[0] .
$$

