Homework 7

due Thursday, October 21, 14:00

Problem 1. Use the Chinese Remainder Theorem and Hensel's Lemma to find all solutions of the following polynomial equations.
a) $x^{2}+x+34=0$ in $\mathbb{Z} / 81 \mathbb{Z}$
b) $x^{2}+x+47=0$ in $\mathbb{Z} / 2401 \mathbb{Z}$
c) $x^{6}-2 x^{5}-35=0$ in $\mathbb{Z} / 6125 \mathbb{Z}$

Problem 2. Find all solutions $x \in \mathbb{Z}$ of the following systems of congruences
a)

$$
\begin{aligned}
& x \equiv 4 \\
& x \equiv 3 \\
& (\bmod 11) \\
& (\bmod 17)
\end{aligned}
$$

b)

$$
\begin{aligned}
2 x & \equiv 3 \\
5 x & (\bmod 5) \\
3 x & \equiv 4 \\
& (\bmod 6) \\
x & \equiv 5 \quad(\bmod 7)
\end{aligned}
$$

Problem 3. Show that for any $n \in \mathbb{Z}_{+}$there are n consecutive integers

$$
a, a+1, \ldots, a+(n-1)
$$

such that each of them is divisible by a perfect square (an integer of the form x^{2}, where x is an integer greater than 1).

Hint: Find an integer a such that $a+(i-1)$ is divisible by p_{i}^{2} where p_{i} is the i-th prime number, for all $i \in\{1, \ldots, n\}$. That is, a is divisible by $4, a+1$ is divisible by $9, a+2$ is divisible by 25 , etc.

Problem 4. Let $a, b \in \mathbb{Z}$ be coprime. Show that for every $c \in \mathbb{Z}$ there exists $n \in \mathbb{Z}$ such that

$$
(a n+b, c)=1
$$

Hint: use the Chinese Remainder Theorem to find n such that $(a n+b) \bmod p=1 \bmod p$ for every prime factor p of c that does not divide a.

Problem 5. The goal of this problem is to prove a generalization of the Chinese Remainder Theorem for integers which are not pairwise coprime.
a) Let m_{1}, m_{2} be any integers greater than 1 , and set $M=\operatorname{lcm}\left(m_{1}, m_{2}\right)$ and $m=$ $\operatorname{gcd}\left(m_{1}, m_{2}\right)$. Show that the map

$$
\begin{aligned}
f: \quad \mathbb{Z} / M \mathbb{Z} & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \\
a \bmod M & \mapsto\left(a \bmod m_{1}, a \bmod m_{2}\right)
\end{aligned}
$$

is well-defined and injective. Show that its image is

$$
f(\mathbb{Z} / M \mathbb{Z})=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \bmod m=x_{2} \bmod m\right\} .
$$

b) (optional) Let m_{1}, \ldots, m_{n} be integers greater than 1 and let M be the least common multiple of all of them. Show that the map

$$
\begin{aligned}
\mathbb{Z} / M \mathbb{Z} & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{n} \mathbb{Z} \\
a \bmod M & \mapsto\left(a \bmod m_{1}, \cdots, a \bmod m_{n}\right)
\end{aligned}
$$

is well-defined and injective, and that its image is

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \bmod m_{i j}=x_{j} \bmod m_{i j} \text { for all } 1 \leq i, j \leq n\right\}
$$

where $m_{i j}=\operatorname{gcd}\left(m_{i}, m_{j}\right)$.
Hint: use part a) and induction.

