Homework 8

due Thursday, October 28, 14:00

Problem 1. What are the last four decimal digits of the number 11^{15999} ?
Problem 2. Show the following facts about Euler's ϕ-function:
a) $\phi(n)$ is even for every $n \geq 3$,
b) $\phi\left(n^{k}\right)=n^{k-1} \phi(n)$ for all $n, k \in \mathbb{N}$,
c) $\phi(n) \geq \sqrt{n}$ for all $n \in \mathbb{N} \backslash\{2,6\}$,
d) If $m \mid n$, then $\phi(m) \mid \phi(n)$.

Problem 3. Let $n=p_{1} \cdots p_{k}$ be a product of distinct odd primes and let $x \in \mathbb{Z} / n \mathbb{Z}$. Show that

$$
x^{\phi(n)+1}=x .
$$

Problem 4. Let $m \in \mathbb{N}$. The goal of this problem is to find all integers which are congruent modulo m to their own square. In other words, we want to find all solutions of the equation $x^{2}-x=0$ in $\mathbb{Z} / m \mathbb{Z}$.
a) Show that, if m is prime, then the only solutions are $[0]$ and [1].
b) Show that, if m is a prime power, then the only solutions are still [0] and [1].
c) For general m, let $m=p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ be the prime-power decomposition of m with $p_{1}<\cdots<p_{k}$ prime and $i_{1}, \ldots, i_{k} \in \mathbb{N}$. Show there are 2^{k} different solutions of the equation $x^{2}-x=0$ in $\mathbb{Z} / m \mathbb{Z}$, and that these are given by

$$
\sum_{j=1}^{k} \delta_{j}\left(\frac{m}{p_{j}^{i_{j}}}\right)^{p_{j}^{p_{j}}-p_{j}^{i_{j}-1}} \bmod m
$$

for every tuple $\left(\delta_{1}, \ldots, \delta_{k}\right) \in\{0,1\}^{k}$.
Hint: For the last part, use Euler's theorem and the Chinese remainder theorem.

