$$
\text { Fall } 2021 \text { - Math 328K - } 55385
$$

Homework 9

due Thursday, November 4, 14:00

Problem 1. Which positive integers m have exactly $3 / 4 / 5$ positive divisors?

Problem 2. Let

$$
\mathcal{F}=\left\{\text { functions } f: \mathbb{Z}_{+} \rightarrow \mathbb{R}\right\}
$$

be the set of all real valued arithmetic functions. We want to define two binary operations on \mathcal{F}, an addition + and a multiplication \star. The operation + is the pointwise addition of functions, defined by

$$
(f+g)(n)=f(n)+g(n)
$$

for any $f, g \in \mathcal{F}$ and $n \in \mathbb{Z}_{+}$, and $f \star g$ is the Dirichlet product

$$
(f \star g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Prove the following statements, for $f, g \in \mathcal{F}$.
a) \mathcal{F} with the addition + and multiplication \star is a commutative ring.

Hint: as multiplicative identity, take the arithmetic function ι defined by $\iota(1)=1$ and $\iota(n)=0$ for all $n>1$. You should convince yourself that all ring axioms are true, but it is enough if you write down commutativity, and associativity of the Dirichlet product, and prove that ι is the neutral element.
b) $f \in \mathcal{F}^{\times}$if and only if $f(1) \neq 0$.

Hint: find a recursive formula for f^{-1}.
c) If f and g are multiplicative, then $f \star g$ is multiplicative.
d) If f is multiplicative and invertible, then f^{-1} is multiplicative.

This is a bit more challenging, and not strictly needed for the rest of the proof. Maybe skip it first, and come back to it when you're done with the rest.
e) Let $\nu \in \mathcal{F}$ be the constant function $\nu(n)=1$. Then the inverse of ν is the Möbius function μ (that is, the multiplicative function defined by $\mu(p)=-1$ and $\mu\left(p^{k}\right)=0$ for every prime number p and $k \geq 2$).
f) Let f be an arithmetic function and F its summatory function. Then $F=f \star \nu$ and $f=F \star \mu$. This is the Möbius inversion formula. If F is multiplicative, then f is multiplicative.

