Fall 2021 - Math 328K - 55385

Homework 10

due Thursday, November 11, 14:00
Problem 1. Let $m, k \in \mathbb{Z}_{+}$and $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. Show that

$$
\operatorname{ord}\left(a^{k}\right)=\frac{\operatorname{ord}(a)}{(\operatorname{ord}(a), k)} .
$$

Problem 2. Let $m \in \mathbb{Z}_{+}$be a positive integer such that $\mathbb{Z} / m \mathbb{Z}$ has a primitive root. Show the following generalization of Wilson's Theorem:

$$
\prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=-1
$$

Problem 3.

a) Let p be an odd prime. Show that the equation $x^{4}=-1$ has a solution in $\mathbb{Z} / p \mathbb{Z}$ if and only if

$$
p \bmod 8=1 \bmod 8
$$

and has exactly 4 solutions in that case.
b) Let $m \in \mathbb{Z}_{+}$and write $m=2^{i_{0}} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ for distinct odd primes $p_{1}, \ldots, p_{k}, i_{0} \geq 0$, and $i_{1}, \ldots, i_{k} \geq 1$. Show the equation $x^{4}=-1$ has a solution in $\mathbb{Z} / m \mathbb{Z}$ if and only if

$$
i_{0} \in\{0,1\} \quad \text { and } \quad p_{j} \bmod 8=1 \bmod 8 \quad \text { for all } j \in\{1, \ldots, k\}
$$

and has exactly 4^{k} solutions in that case.
Problem 4. The n-th Fermat number is $F_{n}=2^{2^{n}}+1$ (the exponent is 2^{n}).
a) Show that $\operatorname{ord}_{F_{n}} 2 \leq 2^{n+1}$.
A remark on notation: for coprime $a \in \mathbb{Z}$ and $m \in \mathbb{Z}_{+}$, the expressions $\operatorname{ord}_{m} a$, $\operatorname{ord}_{m}[a]_{m}$, and ord $[a]_{m}$ all mean the same thing, the order of $[a]_{m}$ in $(\mathbb{Z} / m \mathbb{Z})^{\times}$.
b) Suppose p is a prime divisor of F_{n}, show that $\operatorname{ord}_{p} 2=2^{n+1}$.

Hint: first show that $\operatorname{ord}_{p} 2 \mid 2^{n+1}$ to deduce that $\operatorname{ord}_{p} 2$ is a power of 2 and must divide 2^{n} if $\operatorname{ord}_{p} 2<2^{n+1}$.
c) Use the previous part to show that $p=2^{n+1} k+1$ for some $k \in \mathbb{Z}_{+}$.

