Fall 2021 - Math 328K (55385)

Practice midterm exam (with solutions)

Problem 1. Define prime numbers and composite numbers.

Solution 1. A natural number n is composite if it can be written as a product $n=a b$ with $a, b \in \mathbb{N}$ and $a, b>1$. A natural number n is prime if it is not composite.

Problem 2. What is the last decimal digit of the number 4^{44} ?
Solution 2. The question asks for $\left[4^{44}\right]$ in $\mathbb{Z} / 10 \mathbb{Z}$. We get this by the square and multiply algorithm:

$$
\begin{aligned}
{[4]^{2} } & =[6] \\
{[4]^{4} } & =\left([4]^{2}\right)^{2}=[6] \\
{[4]^{5} } & =[4] \cdot[4]^{4}=[4] \\
{[4]^{10} } & =\left([4]^{5}\right)^{2}=[6] \\
{[4]^{11} } & =[4] \cdot[4]^{10}=[4] \\
{[4]^{22} } & =\left([4]^{11}\right)^{2}=[6] \\
{[4]^{44} } & =\left([4]^{22}\right)^{2}=[6]
\end{aligned}
$$

so the last digit of 4^{44} is 6 .

Problem 3. The Fermat numbers F_{n} are defined by

$$
F_{n}=2^{2^{n}}+1
$$

for all non-negative integers n.
a) Show that $F_{n+1}=F_{0} F_{1} \cdots F_{n}+2$ for all non-negative integers n.
b) Show that F_{n} and F_{m} are coprime, for any integers $0 \leq n<m$.

Solution 3.

a) We prove $F_{0} F_{1} \cdots F_{n}=F_{n+1}-2$ by induction over n. In the base case $n=0$, the statement is $2^{2^{0}}+1=2^{2^{1}}+1-2$, which is true because both sides are 3 . For the inductive step, assume we already know $F_{0} F_{1} \cdots F_{n}=F_{n+1}-2$. Then

$$
\begin{aligned}
F_{0} F_{1} \cdots F_{n} F_{n+1} & =\left(F_{n+1}-2\right) F_{n+1}=\left(2^{2^{n+1}}-1\right)\left(2^{2^{n+1}}+1\right) \\
& =\left(2^{2^{n+1}}\right)^{2}-1=2^{2^{n+2}}-1=F_{n+2}-2
\end{aligned}
$$

This completes the inductive step and the proof.
b) By part a) we can write $F_{m}=F_{0} F_{1} \cdots F_{n} \cdots F_{m-1}+2$, or equivalently

$$
F_{m}-F_{0} F_{1} \cdots F_{n} \cdots F_{m-1}=2
$$

Now if $d=\left(F_{m}, F_{n}\right)$, then d divides the left hand side of this equation, so $d \mid 2$. This means either $d=1$ or $d=2$. But the case $d=2$ cannot occur, since the Fermat numbers are all odd.

Problem 4. Do the following equations have solutions x in $\mathbb{Z} / 96 \mathbb{Z}$? How many? If there are solutions, list all of them.
a) $9 x=5$
b) $5 x=9$

Solution 4.

a) $(9,96)=3$, so this equation has a solution if and only if $3 \mid 5$, which is false. So there are no solutions.
b) $(5,96)=1$, so this equation has a solution if and only if $1 \mid 9$, which is true. So there is a unique solution. We can get it either by guessing or by using the extended Euclidean algorithm. In either case we obtain $x=[21]$, since $5 \cdot[21]=[105]=[9]$.

Problem 5. Let $a_{1}, \ldots, a_{n}, b \in \mathbb{N}$ be positive integers and let $A=a_{1} a_{2} \cdots a_{n}$. Show that if $\left(a_{i}, b\right)=1$ for all $i \in\{1, \ldots, n\}$, then $(A, b)=1$.

Solution 5. Assume for contradiction that $(A, b) \neq 1$. Then there exists a prime p such that $p \mid(A, b)$, so $p \mid A$ and $p \mid b$. We proved that if $p \mid a_{1} \cdots a_{n}$ then $p \mid a_{i}$ for some i. p is therefore a common divisor of a_{i} and b, which contradicts $\left(a_{i}, b\right)=1$.

