Homework 1 Solutions

Problem 1. Show that, for all sets X, Y and Z,
a) $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$,
b) $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$,
c) $X \backslash(X \backslash Y)=X \cap Y$,
d) $X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z)=(X \backslash Y) \backslash Z$,
e) $X \backslash(Y \cap Z)=(X \backslash Y) \cup(X \backslash Z)$.

Solution 1. For example by translating these into logical statements and using truth tables.

Problem 2. Using induction, show that for all $n \in \mathbb{N}$ we have

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution 2. First let $n=1$. Then

$$
\sum_{k=1}^{1} k^{2}=1=\frac{1(1+1)(2 \cdot 1+1)}{6}
$$

For the inductive step, let $n \geq 2$ and assume that the equation holds for $n-1$. That is,

$$
\sum_{k=1}^{n-1} k^{2}=\frac{(n-1) n(2 n-1)}{6}
$$

Then

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n-1} k^{2}+n^{2}=\frac{(n-1) n(2 n-1)}{6}+n^{2}=\frac{2 n^{3}-3 n^{2}+n+6 n^{2}}{6}=\frac{n(n+1)(2 n+1)}{6}
$$

This concludes the inductive step and the proof of the equality.

Problem 3. Show that $2^{n} \geq n^{2}$ for every integer $n \geq 4$.

Solution 3. We use induction over n starting with 4 . In the base case $n=4$ we have $2^{4}=16=4^{2}$. Now assume that we know $2^{n} \geq n^{2}$ and want to show $2^{n+1} \geq(n+1)^{2}$. We can do this for example by computing

$$
(n+1)^{2}=n^{2}+2 n+1 \leq n^{2}+2 n+n=n^{2}+3 n \leq n^{2}+n^{2} \leq 2 \cdot 2^{n}=2^{n+1} .
$$

Problem 4. Let R be an ordered ring with $R_{+} \subset R$ its set of positive elements. Derive from the axioms that
a) $(-a) \cdot(-b)=a b$ for all $a, b \in R$,
b) $a \cdot a>0$ for all $a \in R$ unless $a=0$,
c) if $a, b, c \in R$ with $a>b$ and $b>c$, then $a>c$.

Solution 4.

a) We first show that $(-a) \cdot b=-a b$ for all $a, b \in R$. The inverse $-a$ is defined by the equation $a+(-a)=0$. Multiplying it by b yields

$$
a \cdot b+(-a) \cdot b=(a+(-a)) \cdot b=0 \cdot b=0
$$

Here we used the distributive law and that $0 \cdot b=0$ (we showed this in class). This equation shows that $(-a) \cdot b$ is the additive inverse of $a b$, that is $(-a) \cdot b=-a b$. A similar proof shows that $a \cdot(-b)=-a b$.

Therefore

$$
(-a) \cdot(-b)=-(a \cdot(-b))=-(-a b)=a b
$$

The last step used that $-(-x)=x$, which follows from $x+(-x)=0$ and $(-x)+$ $(-(-x))=0$.
b) We either have $a=0$ or $a>0$ or $a<0$. If $a>0$ then $a \cdot a>0$ by one of the axioms for ordered rings. If $a<0$, then $-a>0$, so $(-a) \cdot(-a)>0$. But $(-a) \cdot(-a)=a \cdot a$ by the previous part, so $a \cdot a>0$.
c) Assume that $a>b$ and $b>c$. Then $a-b$ and $b-c$ are positive. So

$$
a-c=(a-b)+(b-c)
$$

is also positive, i.e. $a>c$.

Problem 5. Let R be a ring and $r \in R$. Show that

$$
(r-1) \sum_{k=0}^{n} r^{k}=r^{n+1}-1
$$

In particular, if R is \mathbb{Q} or \mathbb{R} or \mathbb{C} and $r \neq 1$, then

$$
\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}
$$

Solution 5.

$$
(r-1) \sum_{k=0}^{n} r^{k}=\sum_{k=0}^{n} r^{k+1}-\sum_{k=0}^{n} r^{k}=\sum_{k=1}^{n+1} r^{k}-\sum_{k=0}^{n} r^{k}=r^{n+1}-r^{0}=r^{n+1}-1
$$

If R is \mathbb{Q} or \mathbb{R} or \mathbb{C} and $r \neq 1$, we can divide this equation by $r-1$.

