Fall 2021 - Math 328K - 55385

Homework 4 Solutions

Problem 1. Which pairs $(a, b) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$have $\operatorname{gcd}(a, b)=18$ and $\operatorname{lcm}(a, b)=540$?

Solution 1. We have the prime power decompositions $540=2^{2} \cdot 3^{3} \cdot 5^{1}$ and $18=$ $2^{1} \cdot 3^{2} \cdot 5^{0}$. Clearly a and b are of the form $a=2^{i} 3^{j} 5^{k}$ and $b=2^{I} 3^{J} 5^{K}$, for some integers $i, j, k, I, J, K \geq 0$. Then $\max \{i, I\}=2$ and $\min \{i, I\}=1$, so $i \in\{1,2\}$, and similarly $j \in\{2,3\}$ and $k \in\{0,1\}$. This gives 8 possible triples (i, j, k) corresponding to the values

$$
a \in\{18,36,54,90,108,180,270,540\}
$$

with $b=\frac{540 \cdot 18}{a}$ in every case.
Problem 2. Show that there are no integer solutions to $x^{2}+y^{2}=1000003$.
Solution 2. Assume that $(x, y) \in \mathbb{Z}^{2}$ is a solution. Since

$$
x^{2} \bmod 4, y^{2} \bmod 4 \in\left\{[0]^{2},[1]^{2},[2]^{2},[3]^{2}\right\}=\{[0],[1],[0],[1]\}=\{[0],[1]\}
$$

we have

$$
x^{2}+y^{2} \bmod 4 \in\{[0],[1],[2]\} .
$$

But $1000003 \bmod 4=[3]$, a contradiction. So there are no solutions.
Problem 3. Find all integer solutions (x, y, z) to the equation

$$
2 x+3 y+4 z=5
$$

Which ones have $x, y, z \geq 0$?
Solution 3. We view one of the variables, say z, as a parameter, and solve for x and y. Since $(2,3)=1$ the equation

$$
2 x+3 y=5-4 z
$$

has solutions (x, y) for every $z \in \mathbb{Z}$. To find one of them, we use that $3-2=1$, so $3(5-4 z)+2(4 z-5)=5-4 z$. Hence $(x, y)=(4 z-5,5-4 z)$ is a solution. All other solutions are of them form $(x, y)=(4 z-5+3 k, 5-4 z-2 k)$.

So the solutions (x, y, z) of the original equation are exactly the triples $(4 n-5+3 k, 5-$ $4 n-2 k, n)$, for all integers $n, k \in \mathbb{Z}$. The nonnegative solutions are those with

$$
n \geq 0, \quad 4 n-5+3 k \geq 0, \quad 5-4 n-2 k \geq 0
$$

We can show with elementary algebra that the only integer solution to this system of inequalities is $(k, n)=(2,0)$, which corresponds to the solution $(x, y, z)=(1,1,0)$. We can also see this graphically: in the figure below, the x-axis represents k and the y-axis represents n. The black dots are the points where k, n are integers, and the three lines are defined by $n=0,4 n-5+3 k=0$ and $5-4 n-2 k=0$. The red triangle (including its boundary) indicates all solutions of the system of inequalities. It contains a single integral point $(2,0)$.

Problem 4. To understand the multiplication operation on $\mathbb{Z} / m \mathbb{Z}$ better, it can be helpful to compile a multiplication table, that is to list the product $x \cdot y$ for all pairs $x, y \in \mathbb{Z} / m \mathbb{Z}$. To do this, we should fix a single representative for every congruence class, for example by using the least non-negative representatives. For example, the multiplication table for $\mathbb{Z} / 3 \mathbb{Z}$ would look like this (for example $[2]_{3} \cdot[2]_{3}=[4]_{3}=[1]_{3}$):

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Create a multiplication table for $\mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 5 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$. Do you see interesting patterns?

Solution 4.

				1	2	2		
	0		0	0	0	0	0	
	1		0	1	2	2	3	
	2		0	2	0	0	2	
	3		0	3	2	2	1	
				1	2	3		
)		0		
		0		1	2	3		
		0		2	4	1		
		0		3	1	4		
		0		4	3	2		
	0		1	2	3	3	4	5
0			0	0			0	
1			1	2		3	4	5
2	0		2	4		0	2	4
3	0		3	0		3	0	
4				2			4	
5	0		5	4	3	3	2	

The tables are symmetric, reflecting the commutativity of multiplication. In $\mathbb{Z} / 5 \mathbb{Z}$ there are no 0 entries except in the first row and column, indicating that $\mathbb{Z} / 5 \mathbb{Z}$ is an integral domain, while $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$ are not. Every non-zero row or column of the $\mathbb{Z} / 5 \mathbb{Z}$ contains all numbers (since $\mathbb{Z} / 5 \mathbb{Z}$ is a field). These are just some examples, there are lots of other patterns.

Problem 5. Let $m \in \mathbb{Z}_{+}$be composite. Show that $\mathbb{Z} / m \mathbb{Z}$ is not an integral domain.

Solution 5. Let $m=n k$ with $1<n, k<m$, and set $x=[n]_{m}$ and $y=[k]_{m}$. Then $x, y \neq[0]_{m}$, but

$$
x \cdot y=[n]_{m} \cdot[k]_{m}=[n k]_{m}=[m]_{m}=[0]_{m} .
$$

Problem 6. Compute the following expressions. Give the answer as a least nonnegative residue. You can (and should!) do this without a calculator, and write down intermediate steps.
a) $2^{6} \bmod 11$
b) $2^{12} \bmod 11$
c) $5^{1030} \bmod 3$
d) $78^{3} \bmod 3$
e) $(1!+2!+\cdots+10!) \bmod 5$
f) $(1!+2!+\cdots+100!) \bmod 15$

Solution 6.

a) $\left[2^{6}\right]_{11}=[64]_{11}=[9]_{11}$,
b) $\left[2^{12}\right]_{11}=\left[2^{6}\right]_{11}^{2}=[9]_{11}^{2}=[81]_{11}=[4]_{11}$,
c) $\left[5^{2}\right]_{3}=[25]_{3}=[1]_{3}$, so $\left[5^{1030}\right]_{3}=\left[5^{2}\right]_{3}^{515}=[1]_{3}^{515}=[1]_{3}$,
d) $[78]_{3}=[0]_{3}$, so $\left[78^{3}\right]_{3}=[0]_{3}^{3}=[0]_{3}$,
e) if $k \geq 5$ then $5 \mid k$!, so $[k!]_{5}=[0]_{5}$, hence $[1!+\cdots+10!]_{5}=[1+2+6+24]_{5}=[33]_{5}=[3]_{5}$,
f) if $k \geq 5$ then $5 \mid k!$ and $3 \mid k$!, so $15 \mid k$!, hence $[1!+\cdots+10!]_{15}=[1+2+6+24]_{15}=$ $[33]_{15}=[3]_{15}$.

