Fall 2021 – Math 328K – 55385

Homework 4 Solutions

Problem 1. Which pairs $(a, b) \in \mathbb{Z}_+ \times \mathbb{Z}_+$ have gcd(a, b) = 18 and lcm(a, b) = 540?

Solution 1. We have the prime power decompositions $540 = 2^2 \cdot 3^3 \cdot 5^1$ and $18 = 2^1 \cdot 3^2 \cdot 5^0$. Clearly *a* and *b* are of the form $a = 2^i 3^j 5^k$ and $b = 2^I 3^J 5^K$, for some integers $i, j, k, I, J, K \ge 0$. Then max $\{i, I\} = 2$ and min $\{i, I\} = 1$, so $i \in \{1, 2\}$, and similarly $j \in \{2, 3\}$ and $k \in \{0, 1\}$. This gives 8 possible triples (i, j, k) corresponding to the values

 $a \in \{18, 36, 54, 90, 108, 180, 270, 540\},\$

with $b = \frac{540 \cdot 18}{a}$ in every case.

Problem 2. Show that there are no integer solutions to $x^2 + y^2 = 1000003$.

Solution 2. Assume that $(x, y) \in \mathbb{Z}^2$ is a solution. Since

 $x^2 \bmod 4, y^2 \bmod 4 \in \{[0]^2, [1]^2, [2]^2, [3]^2\} = \{[0], [1], [0], [1]\} = \{[0], [1]\}$

we have

$$x^{2} + y^{2} \mod 4 \in \{[0], [1], [2]\}.$$

But $1000003 \mod 4 = [3]$, a contradiction. So there are no solutions.

Problem 3. Find all integer solutions (x, y, z) to the equation

$$2x + 3y + 4z = 5.$$

Which ones have $x, y, z \ge 0$?

Solution 3. We view one of the variables, say z, as a parameter, and solve for x and y. Since (2,3) = 1 the equation

$$2x + 3y = 5 - 4z$$

has solutions (x, y) for every $z \in \mathbb{Z}$. To find one of them, we use that 3 - 2 = 1, so 3(5 - 4z) + 2(4z - 5) = 5 - 4z. Hence (x, y) = (4z - 5, 5 - 4z) is a solution. All other solutions are of them form (x, y) = (4z - 5 + 3k, 5 - 4z - 2k).

So the solutions (x, y, z) of the original equation are exactly the triples (4n - 5 + 3k, 5 - 4n - 2k, n), for all integers $n, k \in \mathbb{Z}$. The nonnegative solutions are those with

$$n \ge 0$$
, $4n - 5 + 3k \ge 0$, $5 - 4n - 2k \ge 0$.

We can show with elementary algebra that the only integer solution to this system of inequalities is (k, n) = (2, 0), which corresponds to the solution (x, y, z) = (1, 1, 0). We can also see this graphically: in the figure below, the *x*-axis represents *k* and the *y*-axis represents *n*. The black dots are the points where k, n are integers, and the three lines are defined by n = 0, 4n - 5 + 3k = 0 and 5 - 4n - 2k = 0. The red triangle (including its boundary) indicates all solutions of the system of inequalities. It contains a single integral point (2, 0).

Problem 4. To understand the multiplication operation on $\mathbb{Z}/m\mathbb{Z}$ better, it can be helpful to compile a multiplication table, that is to list the product $x \cdot y$ for all pairs $x, y \in \mathbb{Z}/m\mathbb{Z}$. To do this, we should fix a single representative for every congruence class, for example by using the least non-negative representatives. For example, the multiplication table for $\mathbb{Z}/3\mathbb{Z}$ would look like this (for example $[2]_3 \cdot [2]_3 = [4]_3 = [1]_3$):

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Create a multiplication table for $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$. Do you see interesting patterns?

Solution 4.

				0		1		2		3		
		0		0		0		0		0	_	
		1		0		1		2		3		
		2		0		2		0		2		
		3		0		3		2		1		
			0		1		2		3		4	
	0		0		0		0		0		0	_
1			0		1		2		3		4	
	2		0		2		4		1		3	
	3		0		3		1		4		2	
	4		0		4		3		2		1	
		0)	1		2		3		4		5
0		0		0		0		0		0		0
1		0		1		2		3		4		5
1 2 3				2		4		0		2		4
3		0 0		3		0		3		0		3
4		0		4		2		0		4		2
5		0		5		4		3		2		1

The tables are symmetric, reflecting the commutativity of multiplication. In $\mathbb{Z}/5\mathbb{Z}$ there are no 0 entries except in the first row and column, indicating that $\mathbb{Z}/5\mathbb{Z}$ is an integral domain, while $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$ are not. Every non-zero row or column of the $\mathbb{Z}/5\mathbb{Z}$ contains all numbers (since $\mathbb{Z}/5\mathbb{Z}$ is a field). These are just some examples, there are lots of other patterns.

Problem 5. Let $m \in \mathbb{Z}_+$ be composite. Show that $\mathbb{Z}/m\mathbb{Z}$ is not an integral domain.

Solution 5. Let m = nk with 1 < n, k < m, and set $x = [n]_m$ and $y = [k]_m$. Then $x, y \neq [0]_m$, but

$$x \cdot y = [n]_m \cdot [k]_m = [nk]_m = [m]_m = [0]_m$$

Problem 6. Compute the following expressions. Give the answer as a least non-negative residue. You can (and should!) do this without a calculator, and write down intermediate steps.

- a) $2^6 \mod 11$
- b) $2^{12} \mod 11$
- c) $5^{1030} \mod 3$
- d) $78^3 \mod 3$
- e) $(1! + 2! + \dots + 10!) \mod 5$
- f) $(1! + 2! + \dots + 100!) \mod 15$

Solution 6.

- a) $[2^6]_{11} = [64]_{11} = [9]_{11},$ b) $[2^{12}]_{11} = [2^6]_{11}^2 = [9]_{11}^2 = [81]_{11} = [4]_{11},$
- c) $[5^2]_3 = [25]_3 = [1]_3$, so $[5^{1030}]_3 = [5^2]_3^{515} = [1]_3^{515} = [1]_3$,
- d) $[78]_3 = [0]_3$, so $[78^3]_3 = [0]_3^3 = [0]_3$,
- e) if $k \ge 5$ then $5 \mid k!$, so $[k!]_5 = [0]_5$, hence $[1! + \cdots + 10!]_5 = [1+2+6+24]_5 = [33]_5 = [3]_5$,
- f) if $k \ge 5$ then 5 | k! and 3 | k!, so 15 | k!, hence $[1! + \dots + 10!]_{15} = [1+2+6+24]_{15} = [33]_{15} = [3]_{15}$.