## Homework 5 Solutions

Problem 1. Find all solutions in $\mathbb{Z} / 243 \mathbb{Z}$ to the following equations:
a) $18 x=27$,
b) $3 x=3$,
c) $5 x=17$,
d) $6 x=19$.

Is it a valid strategy to simplify such an equation by dividing both sides by the greatest common divisor, for example replacing $18 x=27$ by $2 x=3$ ? Why/why not?

Solution 1. The equations $18 x=27$ and $2 x=3$ are not entirely equivalent: for example, the first one has 9 solutions and the second one has only a single solution.

However, in a slightly different sense they can be thought of as equivalent: say we want to solve the equation $a x=b$ in $\mathbb{Z} / m \mathbb{Z}$. Let $d=(a, m)$. If $d \nmid b$ there are no solutions, so assume $d \mid b$. So $d$ is a common divisor of $a, m$ and $b$. Define $a^{\prime}=a / d, b^{\prime}=b / d$ and $m^{\prime}=m / d$, and let $z$ be an integer. Then $[z]_{m}$ is a solution of $a x=b$ if and only if $m \mid(a z-b)$, or equivalently $d m^{\prime} \mid d\left(a^{\prime} z-b^{\prime}\right)$. This is equivalent to $m^{\prime} \mid a^{\prime} z-b^{\prime}$, hence to $[z]_{m^{\prime}}$ being a solution of $a^{\prime} x=b^{\prime}$. The unique solution in fact, since $\left(a^{\prime}, m^{\prime}\right)=1$. So to find the solutions of $a x=b$, it is enough to find the unique solution $x$ of $a^{\prime} x=b^{\prime}$ in $\mathbb{Z} / m^{\prime} \mathbb{Z}$. Once we have it, its lifts to $\mathbb{Z} / m \mathbb{Z}$ are exactly the solutions to $a x=b$.
a) $(18,243)=9$ and $9 \mid 27$, so there are 9 solutions. By the above, we can find a solution by instead solving $2 x=3$ in $\mathbb{Z} / 27 \mathbb{Z}$. It is easy to guess that $x=[15]_{27}$ solves this. So the solutions to $18 x=27$ in $\mathbb{Z} / 243 \mathbb{Z}$ are

$$
[15],[42],[69],[96],[123],[150],[177],[204],[231] .
$$

b) $(3,243)=3$ and $3 \mid 3$, so there are 3 solutions. Clearly [1] is a solution, so all three of them are

$$
[1],[82],[163]
$$

c) $(5,243)=1$, so there is a unique solution. We can get it by computing Bezout coefficients of 243 and $5: 2 \cdot 243-97 \cdot 5=1$. Multiplying this by 17 , we get that $[17 \cdot(-97)]_{243}=[52]_{243}$ is the unique solution.
d) $(6,243)=3$ and $3 \nmid 19$, so there is no solution.

Problem 2. Let $p$ be an odd prime and $a \in \mathbb{Z} / p \mathbb{Z}$ with $a \neq 0 \bmod p$. A square root of $a$ is a solution $x \in \mathbb{Z} / p \mathbb{Z}$ of the equation $x^{2}=a$.
a) Show that every $a \in \mathbb{Z} / p \mathbb{Z} \backslash\{0 \bmod p\}$ has either none or exactly two square roots.
b) Conclude that $\mathbb{Z} / p \mathbb{Z}$ has exactly two elements which are their own inverses.
c) Find the square roots of all elements of $\mathbb{Z} / 7 \mathbb{Z}$, if they exist.
d) Is the statement of a) still true if $p$ is not prime?

## Solution 2.

a) Assume that $x$ is a square root of $a$, that is $x^{2}=a$. Then $(-x)^{2}=x^{2}=a$, so $-x$ is also a square root of $a$. We claim that $x \neq-x$. Indeed, if $x=-x$, then $2 x=[0]_{p}$, so $x=[0]_{p}$ because $[2]_{p}$ is invertible. So if $a$ has a square root, it has at least two of them.

Now let $y \in \mathbb{Z} / p \mathbb{Z}$ be another square root of a, i.e. $y^{2}=a=x^{2}$. Then $(y-x)(y+x)=$ 0 . As $\mathbb{Z} / p \mathbb{Z}$ is an integral domain, this means either $y=x$ or $y=-x$. This shows that there are no other square roots than $\pm x$.
b) Being its own inverse is equivalent to being a square root of 1 . So by part a) either no elements of $\mathbb{Z} / p \mathbb{Z}$ are their own inverses, or exactly two of them. But we know that [1] is its own inverse, so the first case is impossible, and exactly two elements of $\mathbb{Z} / p \mathbb{Z}$ are their own inverse ([1] and [ -1$]$ ).
c) We just compute

$$
[0]^{2}=[0], \quad[1]^{2}=[1], \quad[2]^{2}=[4], \quad[3]^{2}=[2], \quad[4]^{2}=[2], \quad[5]^{2}=[4], \quad[6]^{2}=[1],
$$

so only [1], [4], and [2] have square roots (we excluded [0] in the definition). The square roots of [1] are [1] and [6], the square roots of [4] are [2] and [5], and the square roots of [2] are [3] and [4].
d) No. For example, in $\mathbb{Z} / 6 \mathbb{Z}$ we have

$$
[0]^{2}=[0], \quad[1]^{2}=[1], \quad[2]^{2}=[4], \quad[3]^{2}=[3], \quad[4]^{2}=[4], \quad[5]^{2}=[1],
$$

so [3] has only a single square root. On the other hand, in $\mathbb{Z} / 8 \mathbb{Z}$ we have

$$
[1]^{2}=[3]^{2}=[5]^{2}=[7]^{2}=[1],
$$

so [1] has four different square roots.

Problem 3. Show that the equation $x^{2}=1$ has one solution in $\mathbb{Z} / 2 \mathbb{Z}$, two solutions in $\mathbb{Z} / 4 \mathbb{Z}$ and four solutions in $\mathbb{Z} / 2^{k} \mathbb{Z}$ for all integers $k>2$.

Solution 3. Assume that $k>2$. Let $x=[a]_{2^{k}}$ be such that $x^{2}=1$. Then $(x-1)(x+1)=$ $[0]_{2^{k}}$, so $2^{k} \mid(a-1)(a+1)$. This means that for some integer $0 \leq n \leq k$ we have $2^{n} \mid(a-1)$ and $2^{k-n} \mid(a+1)$. Let $m=\min \{n, k-n\}$. Then $2^{m}$ divides both $a-1$ and $a+1$, so it also divides their sum, 2. So $m \in\{0,1\}$, and therefore $n \in\{0,1, k-1, k\}$.
If $n=k-1$ then $2^{k-1} \mid(a+1)$. If $n=k$ then $2^{k} \mid(a+1)$, so also $2^{k-1} \mid(a+1)$. This means that $a=2^{k-1} q-1$ for some integer $q$, so $x=[a]_{2^{k}} \in\left\{[-1]_{2^{k}},\left[2^{k-1}-1\right]_{2^{k}}\right\}$.
Similarly, if $n=0$ or $n=1$ then $2^{k-1} \mid(a-1)$. So $a=2^{k-1} q+1$ for some integer $q$, and $x \in\left\{[1]_{2^{k}},\left[2^{k-1}+1\right]_{2^{k}}\right\}$.
So in summary, if $x^{2}=1$ then

$$
x \in\left\{[1],[-1],\left[2^{k-1}+1\right],\left[2^{k-1}-1\right]\right\} .
$$

We can directly check that each of these is indeed a solution, and they are all different. The cases of $\mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$ and easy to check directly.

Problem 4. Let $a, b, c \in \mathbb{N}$ with

$$
a \bmod c=b \bmod c
$$

Show that

$$
\left(2^{a}-1\right) \bmod \left(2^{c}-1\right)=\left(2^{b}-1\right) \bmod \left(2^{c}-1\right)
$$

Solution 4. Assume without loss of generality that $a \geq b$. Then $c \mid(a-b)$, so $a-b=k c$ for some (non-negative) integer $k$. We know that, for any $x \in \mathbb{Z}$,

$$
(x-1)\left(1+x+\cdots+x^{k-1}\right)=x^{k}-1,
$$

so $(x-1) \mid\left(x^{k}-1\right)$. In particular, for $x=2^{c}$ we get that $2^{c}-1$ divides $2^{k c}-1=2^{a-b}-1$, so it also divides

$$
\left(2^{a}-1\right)-\left(2^{b}-1\right)=2^{a}-2^{b}=\left(2^{a-b}-1\right) 2^{b} .
$$

Problem 5. Find inverses of [1], [2], [3], [4] and [5] in $\mathbb{Z} / 8512 \mathbb{Z}$, if they exist.

Solution 5. Note that $8512=2^{6} \cdot 7 \cdot 19$, so $(2,8512)=2$ and $(4,8512)=4$. So [2] and [4] are not invertible. On the other hand,

$$
[1]^{-1}=[1], \quad[3]^{-1}=[5675], \quad[5]^{-1}=[3405] .
$$

These can be found for example by computing the Bezout coefficients:

$$
1=8512-2837 \cdot 3, \quad 1=-2 \cdot 8512+3405 \cdot 5 .
$$

So

$$
[1]=[-2837] \cdot[3], \quad[1]=[3405] \cdot[5] .
$$

Here $[-2837]=[5675]$.

