
Fall 2021 – Math 328K – 55385

Homework 6 Solutions

Problem 1. Using Fermat’s little theorem, find the least positive residue of 2(106) mod-
ulo 17.

Solution 1. By Fermat’s little theorem, x16 = [1]17 for all x ∈ Z/17Z \ {[0]17}. Since
106 = 16 · 62500, we have

[210
6

]17 = [2]10
6

17 = ([2]1617)
62500 = [1]6250017 = [1]17,

so the least positive residue of 2106 modulo 17 is 1.

Problem 2. Show that, other than with ISBN-10, the check digit used for ISBN-13
does not protect against an arbitrary transposition of digits. Which transpositions can
it detect?

Solution 2. Let (x1, . . . , x13) ∈ (Z/10Z)13 be a valid ISBN-13 number. This means
that

13∑
k=1

akxk = [0].

with ak = 2+(−1)k. Let (y1, . . . , y13) ∈ (Z/10Z)13 be the number obtained by applying
one transposition to (x1, . . . , x13), the one exchanging the i-th and j–th digits. So
yi = xj, yj = xi and yk = xk for all k 6∈ {i, j}. Then

13∑
k=1

akyk =
13∑
k=1

(akyk − akxk) = ai(yi − xi) + aj(yj − xj) = (ai − aj)(yi − xi). (?)

If i and j are both even or both odd, then ai = aj, so (?) evaluates to [0]. If i is even
and j is odd, then ai − aj = ±2, so (?) evaluates to [0] if and only if xi − yi ∈ {[0], [5]}.

So ISBN-13 detects a transposition of two digits if and only if they their indices have
opposite parity and the values are different and their difference is not exactly 5.

Problem 3. Show that, if p is an odd prime, then

12 · 32 · · · (p− 4)2 · (p− 2)2 ≡ (−1)(p+1)/2 (mod p)
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Solution 3. Note that for every [2i− 1]p = −[1− 2i]p = −[p− 2i+1]p = −[2(p+1
2
− i)]p

for every i ∈ Z. So

(p−1)/2∏
i=1

[2i− 1]2p = (−1)(p−1)/2
(p−1)/2∏

i=1

[2(p+1
2
− i)]p

(p−1)/2∏
i=1

[2i− 1]p

= (−1)(p−1)/2
(p−1)/2∏

i=1

[2i]p

(p−1)/2∏
i=1

[2i− 1]p

= (−1)(p−1)/2
p−1∏
i=1

[i]p

By Wilson’s Theorem,
∏p−1

i=1 [i]p = [−1]p, so we get
∏(p−1)/2

i=1 [2i− 1]2p = [(−1)(p+1)/2]p.

Problem 4. You probably know that a positive integer is divisible by 3 or 9 if the
sum of its digits is divisible by 3 or 9, respectively. The reason for this is that 10 mod
3 = 1 mod 3 and 10 mod 9 = 1 mod 9: suppose that the integer x ∈ Z+ has digits
x0, x1, . . . , xn, ordered from the least significant to most significant, that is

x =
n∑

i=0

xi · 10i.

Then

xmod 3 =
n∑

i=0

(xi mod 3)(10 mod 3)i =
n∑

i=0

(xi mod 3)(1 mod 3)i =
n∑

i=0

xi mod 3.

So x is divisible by 3 if and only if
∑n

i=0 xi is.

a) Find a test like this for divisibility by 11 and divisibility by 101.

b) By the same method, try to find a test for divisibility by 5 and by 15.

c) This is an alternative way to construct a “general” divisibility test. Let d ∈ Z+ with
(d, 10) = 1 and let e ∈ Z such that [e]d is an inverse of [10]d. Show that d | x if and
only if d | x′, where

x′ =
x− x0

10
+ ex0.

Iterating this gives a sequence x, x′, x′′, x′′′, . . . whose terms are eventually small
enough to check for divisibility directly.
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Solution 4. For any positive integer m ∈ Z we have

xmodm =
n∑

i=0

(10 mod m)i(xi mod m),

so if a0, a1, · · · ∈ Z are integers with [ai]m = [10]im, then x is divisible by m if and only
if
∑n

i=0 aixi is divisible by m.

a) We have [10]i11 = [(−1)i]11, so x is divisible by 11 if and only if
∑n

i=0(−1)ixi is
divisible by 11. Similarly, [10]i101 gives the sequence

a0, a1, a2, · · · = 1, 10,−1,−10, 1, 10,−1,−10, . . .

and x is divisible by 101 if and only if
∑n

i=0 aixi is divisible by 101. In words, this
means we can split up the number in groups of two digits, starting with the least
significant ones, and alternatingly add and subtract these two–digit numbers. The
resulting number is divisible by 101 if and only if the original was.

Here is an example: 654783 is divisible by 101 since

65− 47 + 83 = 101,

which is of course divisible by 101.

b) Since [10]5 = [0]5 we have [10]i5 = [0]5 for all i ≥ 1, and [100]5 = [1]5. So x is divisible
by 5 if and only if x0 is divisible by 5.

The sequence [10i]15 for i = 0, 1, 2, 3, . . . is [1], [10], [10], [10], . . . . So x is divisible by
15 if and only if

x0 + 10
n∑

i=1

xi

is divisible by 15. For example, 972465 is divisible by 15:

9 + 7 + 2 + 4 + 6 = 28, 28 · 10 + 5 = 285,

so 972465 is divisible by 15 if and only if 285 is divisible by 15. Iterating this, 285
is divisible by 15 if and only if 105 is divisible by 15, if and only if 15 is divisible by
15. So 15|972465.

c) With the setup from the question, observe that

[10]d[x
′]d = [x]d − [x0]d + [10]d[e]d[x0]d = [x]d.

Since [10]d is invertible, [x′]d = [0]d if and only if [x]d = [0]d, which is what we wanted
to show.
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If we wanted to see with this test whether 50933 is divisible by 31, we would first
find e ∈ Z with [e]31 = [10]−131 , for example e = −3. Then

31 | 50933⇐⇒ 31 | (5093− 3 · 3 = 5084)

⇐⇒ 31 | (508− 3 · 4 = 496)

⇐⇒ 31 | (49− 3 · 6 = 31)

which is clearly true. Indeed, 50933 = 1643 · 31.

Problem 5. Let m ∈ Z+, m > 2, and let (Z/mZ)× = {[a] | (a,m) = 1} be the subset
of all invertible elements in Z/mZ. Show that∑

x∈(Z/mZ)×
x = [0].

Solution 5. If x is invertible then −x is also invertible (with inverse −x−1). If x 6= −x
this pair of summands cancels, so it suffices to take the sum of all x ∈ (Z/mZ)× with
x = −x, or equivalently 2x = [0]m.

The linear Diophantine equation 2x = [0]m has a single solution x = [0]m if m is odd,
and two solutions x = [0]m and x = [m/2]m if m is even.

Out of these [0]m is never invertible, and [m/2]m is invertible if and only if (m/2,m) = 1,
which would only be the case if m = 2. But we explicitly excluded m = 2, so there are
no invertible x with 2x = [0]m, hence the sum evaluates to [0].
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