$$
\text { Fall } 2021 \text { - Math 328K - } 55385
$$

Homework 6 Solutions

Problem 1. Using Fermat's little theorem, find the least positive residue of $2^{\left(10^{6}\right)} \bmod -$ ulo 17 .

Solution 1. By Fermat's little theorem, $x^{16}=[1]_{17}$ for all $x \in \mathbb{Z} / 17 \mathbb{Z} \backslash\left\{[0]_{17}\right\}$. Since $10^{6}=16 \cdot 62500$, we have

$$
\left[2^{10^{6}}\right]_{17}=[2]_{17}^{10^{6}}=\left([2]_{17}^{16}\right)^{62500}=[1]_{17}^{62500}=[1]_{17},
$$

so the least positive residue of $2^{10^{6}}$ modulo 17 is 1 .

Problem 2. Show that, other than with ISBN-10, the check digit used for ISBN-13 does not protect against an arbitrary transposition of digits. Which transpositions can it detect?

Solution 2. Let $\left(x_{1}, \ldots, x_{13}\right) \in(\mathbb{Z} / 10 \mathbb{Z})^{13}$ be a valid ISBN-13 number. This means that

$$
\sum_{k=1}^{13} a_{k} x_{k}=[0]
$$

with $a_{k}=2+(-1)^{k}$. Let $\left(y_{1}, \ldots, y_{13}\right) \in(\mathbb{Z} / 10 \mathbb{Z})^{13}$ be the number obtained by applying one transposition to $\left(x_{1}, \ldots, x_{13}\right)$, the one exchanging the i-th and j-th digits. So $y_{i}=x_{j}, y_{j}=x_{i}$ and $y_{k}=x_{k}$ for all $k \notin\{i, j\}$. Then

$$
\sum_{k=1}^{13} a_{k} y_{k}=\sum_{k=1}^{13}\left(a_{k} y_{k}-a_{k} x_{k}\right)=a_{i}\left(y_{i}-x_{i}\right)+a_{j}\left(y_{j}-x_{j}\right)=\left(a_{i}-a_{j}\right)\left(y_{i}-x_{i}\right)
$$

If i and j are both even or both odd, then $a_{i}=a_{j}$, so $(*)$ evaluates to [0]. If i is even and j is odd, then $a_{i}-a_{j}= \pm 2$, so (\star) evaluates to [0] if and only if $x_{i}-y_{i} \in\{[0]$, [5] $\}$.

So ISBN-13 detects a transposition of two digits if and only if they their indices have opposite parity and the values are different and their difference is not exactly 5 .

Problem 3. Show that, if p is an odd prime, then

$$
1^{2} \cdot 3^{2} \cdots(p-4)^{2} \cdot(p-2)^{2} \equiv(-1)^{(p+1) / 2} \quad(\bmod p)
$$

Solution 3. Note that for every $[2 i-1]_{p}=-[1-2 i]_{p}=-[p-2 i+1]_{p}=-\left[2\left(\frac{p+1}{2}-i\right)\right]_{p}$ for every $i \in \mathbb{Z}$. So

$$
\begin{aligned}
\prod_{i=1}^{(p-1) / 2}[2 i-1]_{p}^{2} & =(-1)^{(p-1) / 2} \prod_{i=1}^{(p-1) / 2}\left[2\left(\frac{p+1}{2}-i\right)\right]_{p} \prod_{i=1}^{(p-1) / 2}[2 i-1]_{p} \\
& =(-1)^{(p-1) / 2} \prod_{i=1}^{(p-1) / 2}[2 i]_{p} \prod_{i=1}^{(p-1) / 2}[2 i-1]_{p} \\
& =(-1)^{(p-1) / 2} \prod_{i=1}^{p-1}[i]_{p}
\end{aligned}
$$

By Wilson's Theorem, $\prod_{i=1}^{p-1}[i]_{p}=[-1]_{p}$, so we get $\prod_{i=1}^{(p-1) / 2}[2 i-1]_{p}^{2}=\left[(-1)^{(p+1) / 2}\right]_{p}$.
Problem 4. You probably know that a positive integer is divisible by 3 or 9 if the sum of its digits is divisible by 3 or 9 , respectively. The reason for this is that $10 \bmod$ $3=1 \bmod 3$ and $10 \bmod 9=1 \bmod 9:$ suppose that the integer $x \in \mathbb{Z}_{+}$has digits $x_{0}, x_{1}, \ldots, x_{n}$, ordered from the least significant to most significant, that is

$$
x=\sum_{i=0}^{n} x_{i} \cdot 10^{i}
$$

Then

$$
x \bmod 3=\sum_{i=0}^{n}\left(x_{i} \bmod 3\right)(10 \bmod 3)^{i}=\sum_{i=0}^{n}\left(x_{i} \bmod 3\right)(1 \bmod 3)^{i}=\sum_{i=0}^{n} x_{i} \bmod 3 .
$$

So x is divisible by 3 if and only if $\sum_{i=0}^{n} x_{i}$ is.
a) Find a test like this for divisibility by 11 and divisibility by 101 .
b) By the same method, try to find a test for divisibility by 5 and by 15 .
c) This is an alternative way to construct a "general" divisibility test. Let $d \in \mathbb{Z}_{+}$with $(d, 10)=1$ and let $e \in \mathbb{Z}$ such that $[e]_{d}$ is an inverse of $[10]_{d}$. Show that $d \mid x$ if and only if $d \mid x^{\prime}$, where

$$
x^{\prime}=\frac{x-x_{0}}{10}+e x_{0} .
$$

Iterating this gives a sequence $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots$ whose terms are eventually small enough to check for divisibility directly.

Solution 4. For any positive integer $m \in \mathbb{Z}$ we have

$$
x \bmod m=\sum_{i=0}^{n}(10 \bmod m)^{i}\left(x_{i} \bmod m\right)
$$

so if $a_{0}, a_{1}, \cdots \in \mathbb{Z}$ are integers with $\left[a_{i}\right]_{m}=[10]_{m}^{i}$, then x is divisible by m if and only if $\sum_{i=0}^{n} a_{i} x_{i}$ is divisible by m.
a) We have $[10]_{11}^{i}=\left[(-1)^{i}\right]_{11}$, so x is divisible by 11 if and only if $\sum_{i=0}^{n}(-1)^{i} x_{i}$ is divisible by 11. Similarly, $[10]_{101}^{i}$ gives the sequence

$$
a_{0}, a_{1}, a_{2}, \cdots=1,10,-1,-10,1,10,-1,-10, \ldots
$$

and x is divisible by 101 if and only if $\sum_{i=0}^{n} a_{i} x_{i}$ is divisible by 101 . In words, this means we can split up the number in groups of two digits, starting with the least significant ones, and alternatingly add and subtract these two-digit numbers. The resulting number is divisible by 101 if and only if the original was.

Here is an example: 654783 is divisible by 101 since

$$
65-47+83=101,
$$

which is of course divisible by 101.
b) Since $[10]_{5}=[0]_{5}$ we have $[10]_{5}^{i}=[0]_{5}$ for all $i \geq 1$, and $\left[10^{0}\right]_{5}=[1]_{5}$. So x is divisible by 5 if and only if x_{0} is divisible by 5 .

The sequence $\left[10^{i}\right]_{15}$ for $i=0,1,2,3, \ldots$ is $[1],[10],[10],[10], \ldots$ So x is divisible by 15 if and only if

$$
x_{0}+10 \sum_{i=1}^{n} x_{i}
$$

is divisible by 15 . For example, 972465 is divisible by 15 :

$$
9+7+2+4+6=28, \quad 28 \cdot 10+5=285
$$

so 972465 is divisible by 15 if and only if 285 is divisible by 15 . Iterating this, 285 is divisible by 15 if and only if 105 is divisible by 15 , if and only if 15 is divisible by 15. So $15 \mid 972465$.
c) With the setup from the question, observe that

$$
[10]_{d}\left[x^{\prime}\right]_{d}=[x]_{d}-\left[x_{0}\right]_{d}+[10]_{d}[e]_{d}\left[x_{0}\right]_{d}=[x]_{d} .
$$

Since $[10]_{d}$ is invertible, $\left[x^{\prime}\right]_{d}=[0]_{d}$ if and only if $[x]_{d}=[0]_{d}$, which is what we wanted to show.

If we wanted to see with this test whether 50933 is divisible by 31, we would first find $e \in \mathbb{Z}$ with $[e]_{31}=[10]_{31}^{-1}$, for example $e=-3$. Then

$$
\begin{aligned}
31 \mid 50933 & \Longleftrightarrow 31 \mid(5093-3 \cdot 3=5084) \\
& \Longleftrightarrow 31 \mid(508-3 \cdot 4=496) \\
& \Longleftrightarrow 31 \mid(49-3 \cdot 6=31)
\end{aligned}
$$

which is clearly true. Indeed, $50933=1643 \cdot 31$.
Problem 5. Let $m \in \mathbb{Z}_{+}, m>2$, and let $(\mathbb{Z} / m \mathbb{Z})^{\times}=\{[a] \mid(a, m)=1\}$ be the subset of all invertible elements in $\mathbb{Z} / m \mathbb{Z}$. Show that

$$
\sum_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=[0] .
$$

Solution 5. If x is invertible then $-x$ is also invertible (with inverse $-x^{-1}$). If $x \neq-x$ this pair of summands cancels, so it suffices to take the sum of all $x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$with $x=-x$, or equivalently $2 x=[0]_{m}$.

The linear Diophantine equation $2 x=[0]_{m}$ has a single solution $x=[0]_{m}$ if m is odd, and two solutions $x=[0]_{m}$ and $x=[m / 2]_{m}$ if m is even.
Out of these $[0]_{m}$ is never invertible, and $[m / 2]_{m}$ is invertible if and only if $(m / 2, m)=1$, which would only be the case if $m=2$. But we explicitly excluded $m=2$, so there are no invertible x with $2 x=[0]_{m}$, hence the sum evaluates to [0].

