Homework 7 Solutions

Problem 1. Use the Chinese Remainder Theorem and Hensel's Lemma to find all solutions of the following polynomial equations.

- a) $x^2 + x + 34 = 0$ in $\mathbb{Z}/81\mathbb{Z}$
- b) $x^2 + x + 47 = 0$ in $\mathbb{Z}/2401\mathbb{Z}$
- c) $x^6 2x^5 35 = 0$ in $\mathbb{Z}/6125\mathbb{Z}$

Solution 1.

a) Let $f(x) = x^2 + x + 34$, with derivative f'(x) = 2x + 1. We compute the solutions of f(x) = 0 modulo 3, 9, 27, and 81.

Modulo 3, we have $f(x) \mod 3 = x^2 + x + 1 \mod 3$, so $f([0]_3) = [1]_3$, $f([1]) = [0]_3$ and $f([2]) = [1]_3$. This means $[1]_3$ is the only solution in $\mathbb{Z}/3\mathbb{Z}$.

To find which lifts of $[1]_3$ to $\mathbb{Z}/9\mathbb{Z}$ are solutions, we use Hensel's Lemma. Since $[f'(1)]_3 = [0]_3$ we are in the first case of Hensel's Lemma, i.e. every lift is a solution, or none of them. The lifts are $[1]_9$, $[4]_9$ and $[7]_9$. Since $f([1]_9) = [1+1+34]_9 = [0]_9$, $[1]_9$ is a solution, and therefore $[4]_9$ and $[7]_9$ are also solutions. These are all solutions modulo 9.

The lifts of $[1]_9$ to $\mathbb{Z}/27\mathbb{Z}$ are $[1]_{27}$, $[10]_{27}$, $[19]_{27}$. Since $f([1]_{27}) = [1+1+34]_{27} = [9]_{27}$, none of these are solutions. The lifts of $[4]_9$ are $[4]_{27}$, $[13]_{27}$, $[22]_{27}$. Since $f([4]_{27}) = [16+4+34]_{27} = [0]_{27}$, all of these are solutions. The lifts of $[7]_9$ are $[7]_{27}$, $[16]_{27}$, $[25]_{27}$. Since $f([7]_{27}) = [49+7+34]_{27} = [9]_{27}$, so none of these are solutions. Therefore, the solutions modulo 27 are $[4]_{27}$, $[13]_{27}$, $[22]_{27}$.

The lifts of $[4]_{27}$ to $\mathbb{Z}/81\mathbb{Z}$ are $[4]_{81}$, $[31]_{81}$, $[58]_{81}$. Since $f([4]_{81}) = [16 + 4 + 34]_{81} = [54]_{81}$, none of these are solutions. The lifts of $[13]_{27}$ are $[13]_{81}$, $[40]_{81}$, $[67]_{81}$. Since $f([13]_{81}) = [169 + 13 + 34]_{81} = [54]_{81}$, none of these are solutions. The lifts of $[22]_{27}$ are $[22]_{81}$, $[49]_{81}$, $[76]_{81}$. Since $f([22]_{81}) = [484 + 22 + 34]_{81} = [54]_{81}$, none of these are solutions. So there are no solutions in $\mathbb{Z}/81\mathbb{Z}$.

b) Let $g(x) = x^2 + x + 47$, then g'(x) = 2x + 1. Since $2401 = 7^4$, we again find solutions of g(x) = 0 modulo 7, $7^2 = 49$, $7^3 = 343$, and finally 7^4 .

To find solutions in $\mathbb{Z}/7\mathbb{Z}$, we can just try out all possibilities, or use that

$$[g(a)]_7 = [a^2 + a - 2]_7 = [(a - 1)(a + 2)]_7.$$

So if $[a]_7$ is a solution, then $7 \mid (a-1)(a+2)$, so either $7 \mid a-1$ or $7 \mid a+2$. So the two solutions in $\mathbb{Z}/7\mathbb{Z}$ are $[1]_7$ and $[-2]_7 = [5]_7$.

Now $[g'(1)]_7 = [3]_7$ and $[g'(5)]_7 = [0]_7$, so $[3]_7$ has a unique lift to $\mathbb{Z}/7^k\mathbb{Z}$ which is a solution, for all k, while we have to use the first case of Hensel's Lemma for $[5]_7$.

To find the lifts of $[1]_7$ which is are solutions, we compute $-[g'(1)]_7^{-1}[\frac{g(1)}{7}]_7 = -[3]_7^{-1}[7]_7 = [0]_7$, so $[1+0\cdot7]_{49} = [1]_{49}$ is the solution in $\mathbb{Z}/49\mathbb{Z}$. Next, $-[g'(1)]_7^{-1}[\frac{g(1)}{49}]_7 = -[3]_7^{-1}[1]_7 = [2]_7$, so $[1+2\cdot49]_{343} = [99]_{343}$ is the solution in $\mathbb{Z}/343\mathbb{Z}$. Finally, $-[g'(1)]_y^{-1}[\frac{g(99)}{343}]_7 = [2]_7$, so $[99+2\cdot343]_{2401} = [785]_{2401}$ is the solution in $\mathbb{Z}/2401\mathbb{Z}$. Indeed, a quick check with a calculator confirms that $[g(785)]_{2401} = [617057]_{2401} = [0]_{2401}$.

To find the lifts of $[5]_7$ which are solutions, we use the same strategy as in a). The lifts of $[5]_7$ in $\mathbb{Z}/49\mathbb{Z}$ are

$$[5]_{49}, [12]_{49}, [19]_{49}, [26]_{49}, [33]_{49}, [40]_{49}, [47]_{49}.$$

Since $[g(5)]_{49} = [41]_{49}$, none of these are solutions. So the only solution to g(x) = 0 in $\mathbb{Z}/2401\mathbb{Z}$ is $[785]_{2401}$.

c) Since $6125 = 5^3 \cdot 7^2$ we first find solutions modulo 5, 5^2 , 5^3 , 7, and 7^2 , and then use the Chinese Remainder Theorem to put them together to solutions modulo 6125.

Let $h(x) = x^6 - 2x^5 - 35$, then $h'(x) = 6x^5 - 10x^4$. Note that $[h(x)]_5 = [x^2 - 2x]_5 = [x(x-2)]$ by Fermat's little theorem, so the solutions in $\mathbb{Z}/5\mathbb{Z}$ are $[0]_5$ and $[2]_5$. We have $[h'(0)]_5 = [0]_5$ and $[h'(2)]_5 = [2]_5$.

The lifts of $[0]_5$ to $\mathbb{Z}/25\mathbb{Z}$ are $[0]_{25}$, $[5]_{25}$, $[10]_{25}$, $[15]_{25}$, $[20]_{25}$. Since $[h(0)]_{25} = [15]_{25}$, none of these are solutions modulo 25.

We have $-[h'(2)]_5^{-1} \cdot [\frac{h(2)}{5}]_5 = [2]_5 \cdot [-7]_5 = [1]_5$, so $[2+1\cdot 5]_{25} = [7]_{25}$ is the solution modulo 25. Furthermore, $-[h'(2)]_5^{-1} \cdot [\frac{h(7)}{25}]_5 = [2]_5 \cdot [\frac{(7-2)\cdot 7^5 - 5\cdot 7}{5^2}]_5 = [2]_5 \cdot [\frac{7\cdot (7^4 - 1)}{5}]_5 = [\frac{2\cdot 7\cdot 2400}{5}]_5 = [0]_5$, so $[7+0\cdot 25]_{125} = [7]_{125}$ is the unique solution in $\mathbb{Z}/125\mathbb{Z}$.

To find solutions modulo 7 and 49, note that $[h(x)]_7 = [x^5(x-2)]_7$, so the only solutions in $\mathbb{Z}/7\mathbb{Z}$ are $[0]_7$ and $[2]_7$. Then $[h'(0)]_7 = [0]_7$ and $[h'(2)]_7 = [32]_7 = [4]_7$.

The lifts of $[0]_7$ to $\mathbb{Z}/49\mathbb{Z}$ are [0], [7], [14], [21], [28], [35], [42]. Since $[h(0)]_{49} = [-35]_{49} \neq [0]_{49}$, none of them are solutions. We have $-[h'(2)]_7^{-1} \cdot [\frac{h(2)}{7}]_7 = -[4]_7^{-1} \cdot [\frac{-35}{7}]_7 = -[2]_7 \cdot [-5]_7 = [3]_7$, so the unique solution modulo 49 is $[2+3\cdot7]_{49} = [23]_{49}$.

Finally, we use the Chinese Remainder Theorem to construct the unique solution in $\mathbb{Z}/6125\mathbb{Z}$ out of the solutions $[7]_{125}$ and $[23]_{49}$. To this end, we need to find the inverses of $[125]_{49}$ and $[49]_{125}$. It is easy to guess that $[5]_{49}^{-1} = [10]_{49}$ and $[7]_{125}^{-1} = [18]_{125}$, so $[125]_{49}^{-1} = [10^3]_{49} = [20]_{49}$ and $[49]_{125}^{-1} = [18^2]_{125} = [74]_{125}$. Hence the unique solution modulo $\mathbb{Z}/6125\mathbb{Z}$ is

$$[7 \cdot 49 \cdot 74 + 23 \cdot 125 \cdot 20]_{6125} = [82882]_{6125} = [3257]_{6125}.$$

Indeed, $3257^6 - 2 \cdot 3257^5 - 35 = 1192998192645855725500$ is divisible by 6125.

Problem 2. Find all solutions $x \in \mathbb{Z}$ of the following systems of congruences

a)
$$x \equiv 4 \pmod{11}$$

$$x \equiv 3 \pmod{17}$$

b)
$$2x \equiv 3 \pmod{5}$$

$$5x \equiv 2 \pmod{6}$$

$$3x \equiv 4 \pmod{7}$$

$$x \equiv 5 \pmod{8}$$

Solution 2.

a) We have $[11]_{17}^{-1} = [-3]_{17}$ and $[17]_{11}^{-1} = [2]_{11}$, so by the CRT

$$[x]_{187} = [4 \cdot 17 \cdot 2 + 3 \cdot 11 \cdot (-3)]_{187} = [37]_{187}$$

The solutions are all integers of the form x=37+187k, for $k\in\mathbb{Z}.$

b) Assume x solves the system of congruences. Since $[5]_6^{-1} = [5]_6$ the second equation is equivalent to $[x]_6 = [10]_6$. This implies $[x]_2 = [0]_2$. On the other hand, the fourth equation implies $[x]_2 = [1]_2$. This is a contradiction, so there is no solution.

Problem 3. Show that for any $n \in \mathbb{Z}_+$ there are n consecutive integers

$$a, a+1, \dots, a+(n-1)$$

such that each of them is divisible by a perfect square (an integer of the form x^2 , where x is an integer greater than 1).

Hint: Find an integer a such that a + (i - 1) is divisible by p_i^2 where p_i is the i-th prime number, for all $i \in \{1, ..., n\}$. That is, a is divisible by 4, a + 1 is divisible by 9, a + 2 is divisible by 25, etc.

Solution 3. Let p_i be the *i*-th prime number, and let $M = \prod_{i=1}^n p_i^2$. By the Chinese Remainder Theorem, there exists $x \in \mathbb{Z}/M\mathbb{Z}$ with

$$(x \bmod p_1^2, x \bmod p_2^2, \dots, x \bmod p_n^2) = ([0]_{p_1^2}, [-1]_{p_2^2}, \dots, [-n+1]_{p_n^2}).$$

Let a be any integer with $x = [a]_M$. Then $p_1^2 \mid a, p_2^2 \mid a+1$, etc., up to $p_n^2 \mid a+(n-1)$.

Problem 4. Let $a, b \in \mathbb{Z}$ be coprime. Show that for every $c \in \mathbb{Z}$ there exists $n \in \mathbb{Z}$ such that

$$(an + b, c) = 1.$$

Hint: use the Chinese Remainder Theorem to find n such that $(an + b) \mod p = 1 \mod p$ for every prime factor p of c that does not divide a.

Solution 4. Let $\{p_1, \ldots, p_k\}$ be the set of primes which divide c, but not a, with $p_i \neq p_j$ for $i \neq j$. Let $M = p_1 \cdots p_k$. By the CRT there is $x \in \mathbb{Z}/M\mathbb{Z}$ with

$$x \bmod p_i = [a]_{p_i}^{-1}[1-b]_{p_i}$$

for all $i \in \{1, ..., k\}$. Note that $[a]_{p_i}$ is invertible since we assumed $p_i \nmid a$. Let $n \in \mathbb{Z}$ be a representative of x, that is $x = [n]_M$. Then $[an + b]_{p_i} = [1]_{p_i}$ for all i.

Now assume that (an + b, c) > 1. Then there is a prime number p dividing (an + b, c). In particular, $p \mid c$ and $p \mid an + b$. We distinguish two cases: if $p \mid a$, then p divides b = (an + b) - an, which is a contradiction to a, b being coprime. On the other hand, if $p \nmid a$, then $p = p_i$ for some $i \in \{1, ..., k\}$, so $[an + b]_p = [1]_p$. But we also know $[an + b]_p = [0]_p$. This is also a contradiction, so (an + b, c) = 1.

Problem 5. The goal of this problem is to prove a generalization of the Chinese Remainder Theorem for integers which are not pairwise coprime.

a) Let m_1, m_2 be any integers greater than 1, and set $M = \text{lcm}(m_1, m_2)$ and $m = \text{gcd}(m_1, m_2)$. Show that the map

$$f: \quad \mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z}$$

 $a \mod M \mapsto (a \mod m_1, a \mod m_2)$

is well-defined and injective. Show that its image is

$$f(\mathbb{Z}/M\mathbb{Z}) = \{(x_1, x_2) \mid x_1 \bmod m = x_2 \bmod m\}.$$

b) (optional) Let m_1, \ldots, m_n be integers greater than 1 and let M be the least common multiple of all of them. Show that the map

$$\mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_n\mathbb{Z}$$

 $a \mod M \mapsto (a \mod m_1, \dots, a \mod m_n)$

is well-defined and injective, and that its image is

$$\{(x_1,\ldots,x_n)\mid x_i \bmod m_{ij}=x_j \bmod m_{ij} \text{ for all } 1\leq i,j\leq n\},\$$

where $m_{ij} = \gcd(m_i, m_j)$.

Hint: use part a) and induction.

Solution 5.

a) We showed in class that the maps $\mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_i\mathbb{Z}$, $a \mod M \mapsto a \mod m_i$ are well-defined when $m_i \mid M$. The map f is just composed of these.

To show injectivity, assume that $x \in \mathbb{Z}/M\mathbb{Z}$ and $a \in \mathbb{Z}$ with $x = [a]_M$, such that $f(x) = ([0]_{m_1}, [0]_{m_2})$. This means $m_1 \mid a$ and $m_2 \mid a$. If we write

$$m_1 = p_1^{i_1} \cdots p_k^{i_k}, \qquad m_2 = p_1^{j_1} \cdots p_k^{j_k}$$

for distinct primes p_1, \ldots, p_k and $i_1, \ldots, i_k, j_1, \ldots, j_k \geq 0$. we see that $p_\ell^{i_\ell} \mid a$ and $p_\ell^{j_\ell} \mid a$ for each $\ell \in \{1, \ldots, k\}$, so $p_\ell^{\max\{i_\ell, j_\ell\}} \mid a$ for each ℓ . But this means that

$$p_1^{\max\{i_1,j_1\}}\cdots p_k^{\max\{i_k,j_k\}} \mid a$$

(using Lemma ???). So $M \mid a$, i.e. $x = [0]_M$.

Now if $x, x' \in \mathbb{Z}/M\mathbb{Z}$ with f(x) = f(x'), then it is easy to see that $f(x - x') = ([0]_{m_1}, [0]_{m_2})$, and so by the above $x - x' = [0]_M$, i.e. x = x'. So f is injective.

Let

$$A = \{(x_1, x_2) \mid x_1 \bmod m = x_2 \bmod m\}.$$

It is easy to see that $f(\mathbb{Z}/M\mathbb{Z}) \subset A$: this is because

$$(a \mod m_1) \mod m = a \mod m = (a \mod m_2) \mod m.$$

For fixed $x_1 \in \mathbb{Z}/m_1\mathbb{Z}$, the set of $x_2 \in \mathbb{Z}/m_2\mathbb{Z}$ such that $(x_1, x_2) \in A$ has exactly m_2/m elements. So $|A| = m_1 m_2/m = M$ (see the question from the midterm exam). But since f is injective, we also have $|f(\mathbb{Z}/M\mathbb{Z})| = M$. Therefore, $f(\mathbb{Z}/M\mathbb{Z}) = A$.