Fall 2021 — Math 328K — 55385

Homework 7 Solutions

Problem 1. Use the Chinese Remainder Theorem and Hensel’s Lemma to find all
solutions of the following polynomial equations.

a)
b)

c)

2’ +x+34=0inZ/81Z
¥+ +47=0in Z/2401Z
2% —22° — 35 =01in Z/6125Z

Solution 1.

a)

Let f(z) = 2%+ = + 34, with derivative f’(z) = 2z + 1. We compute the solutions of
f(z) = 0 modulo 3, 9, 27, and 81.

Modulo 3, we have f(x) mod 3 = 2% + 2 4+ 1 mod 3, so f([0]3) = [1]5, f([1]) = [0]3
and f([2]) = [1]3. This means [1]3 is the only solution in Z/3Z.

To find which lifts of [1]3 to Z/9Z are solutions, we use Hensel’s Lemma. Since
[f'(1)]s = [0]3 we are in the first case of Hensel’s Lemma, i.e. every lift is a solution,
or none of them. The lifts are [1]y, [4]o and [7]o. Since f([1]g) = [1 + 1 + 34]y = [0]o,
[1]o is a solution, and therefore [4]¢ and [7]9 are also solutions. These are all solutions
modulo 9.

The lifts of [1]9 to Z/Q?Z are [1]27, [10]27, [19}27 Since f([1]27> = [1 +1 —|—34]27 = [9]27,
none of these are solutions. The lifts of [4]y are [4]27, [13]a7, [22]27. Since f([4]a7) =
[16 4+4 4 34]27 = [0]27, all of these are solutions. The lifts of [7]g are [7]a7, [16]27, [25]27.
Since f([7])27) = [49 + 7+ 34]a7 = [9]27, so none of these are solutions. Therefore, the
solutions modulo 27 are [4]a7, [13]a7, [22]27.

The lifts of [4]s7 to Z/817Z are [4]s1, [31]s1, [58]s1. Since f([4]s1) = [16 +4 + 34]s; =
[54]s1, none of these are solutions. The lifts of [13]|o7 are [13]g1, [40]s1, [67]s1. Since
f([13]s1) = [169 + 13 4 34]s; = [54]s1, none of these are solutions. The lifts of [22]y7
are [22]s1, [49]s1, [76]s1. Since f([22]s1) = [484 + 22 + 34]s; = [54]s1, none of these are
solutions. So there are no solutions in Z/817Z.

Let g(z) = 2%+ 2 + 47, then ¢'(x) = 2z + 1. Since 2401 = 7%, we again find solutions
of g(z) = 0 modulo 7, 72 = 49, 73 = 343, and finally 7*.



To find solutions in Z/7Z, we can just try out all possibilities, or use that
l9(a)l7 = [a* +a—2]; = [(a — 1)(a +2)].

So if [a]; is a solution, then 7 | (a — 1)(a + 2), so either 7 |a— 1 or 7| a + 2. So the
two solutions in Z/7Z are [1|; and [—2]; = [5]7.

Now [¢'(1)]7 = [3]7 and [¢(5)]7 = [0]+, so [3]; has a unique lift to Z/7*Z which is a
solution, for all k, while we have to use the first case of Hensel’s Lemma for [5];.

To find the lifts of [1]; which is are solutions, we compute —[¢'(1)];* [%1)] = —[3]-1[7)-
[0]7, so [1 + 0 - 7]s9 = [l]so is the solution in Z/49Z. Next, —[g'(l)];l[%h =

—[3]711]7 = [2]7, s0 [1 + 2 - 49]s43 = [99]543 is the solution in Z/343Z. Finally,
—[g (D)) 4207 = [2]7, 50 [99 + 2 - 3432401 = [785]2401 s the solution in Z/2401Z.
Indeed, a quick check with a calculator confirms that [g(785)]2401 = [617057]2401 =

[0] 2401-

To find the lifts of [5]; which are solutions, we use the same strategy as in a). The
lifts of [5]7 in Z/49Z are

[5]49, [12]49, [19]49, [26]49, [33}49, [40]49, [47]49

Since [g(5)]a9 = [41]49, none of these are solutions. So the only solution to g(z) =0
in Z/2401Z is [785}2401.

Since 6125 = 53 - 72 we first find solutions modulo 5, 52, 53, 7, and 72, and then use
the Chinese Remainder Theorem to put them together to solutions modulo 6125.

Let h(x) = 2% — 225 — 35, then h/(x) = 62° — 102*. Note that [h(z)]5 = [z — 2x]5 =
[z(z — 2)] by Fermat’s little theorem, so the solutions in Z/5Z are [0]5 and [2]5. We
have [A/(0)]5 = [0]5 and [A/(2)]5 = [2]s.

The lifts of [0]5 to Z/25Z are [0]257 [5]25, [10]25, [15]25, [20]25 Since [h(O)]25 = [15]25,
none of these are solutions modulo 25.

We have —[h'(2)]5" - [@]5 = [2]5 - [=7]5s = [1]5, s0 [2 4+ 1 - B]a5 = [7]25 is the solution

modulo 25. Furthermore, —[1(2)]5" - [42]5 = [2]; - [T2T=2T), — (9] . [HT=1), =

[21280), = [0]5, so [7 4 0 - 25]125 = [7]125 is the unique solution in Z/125Z.

To find solutions modulo 7 and 49, note that [h(z)]; = [2#°(z — 2)];, so the only
solutions in Z/7Z are [0]; and [2]7. Then [A/(0)]7 = [0]7 and [A/(2)]; = [32]; = [4]7.

The lifts of [0]; to Z/49Z are [0], [7], [14], [21], [28], [35], [42]. Since [A(0)]s9 = [—35]49 #
[0]49, none of them are solutions. We have —[h/(2)];" - [@]7 = —[4];' - [, =
—[2]7 - [-5]7 = [3]7, so the unique solution modulo 49 is [2 + 3 - 7|49 = [23]49.



Finally, we use the Chinese Remainder Theorem to construct the unique solution in
Z]6125Z out of the solutions [7]125 and [23]49. To this end, we need to find the inverses
of [125]49 and [49]195. It is easy to guess that [5]9 = [10]49 and [7];o5 = [18]125, 5O
[125]5 = [10%]49 = [20]49 and [49];55 = [18%]125 = [74]125. Hence the unique solution
modulo Z/6125Z is

[7-49 - 74 + 23 - 125 - 20]g105 = [82882]6125 = [3257]6125-
Indeed, 32576 — 2 - 3257% — 35 = 1192998192645855725500 is divisible by 6125.

Problem 2. Find all solutions x € Z of the following systems of congruences

a)

b)
2¢ =3 (mod b5)
5z =2 (mod 6)
3r=4 (mod7)
r=5 (mod 8)

Solution 2.
a) We have [11];7 = [-3]17 and [17];;" = [2]11, so by the CRT
[z]1g7 = [4-17-24+ 3 - 11 - (—=3)]1s7 = [37]187
The solutions are all integers of the form x = 37 + 187k, for k € Z.

b) Assume x solves the system of congruences. Since [5];' = [5]¢ the second equation
is equivalent to [x]¢ = [10]¢. This implies [x]s = [0]s. On the other hand, the fourth
equation implies [x]s = [1]. This is a contradiction, so there is no solution.

Problem 3. Show that for any n € Z, there are n consecutive integers
a,a+1,...,a+ (n—1)

such that each of them is divisible by a perfect square (an integer of the form z?, where
x is an integer greater than 1).

Hint: Find an integer a such that a + (i — 1) is divisible by p? where p; is the i-th prime
number, for all i € {1,...,n}. That is, a is divisible by 4, a + 1 is divisible by 9, a + 2
is divisible by 25, etc.



Solution 3. Let p; be the i~th prime number, and let M = [}, p7. By the Chinese
Remainder Theorem, there exists z € Z/MZ with

(z mod p}, z mod p3, ...,z mod p2) = ([0],2, [—1],2, ..., [-n+1],2).

Let a be any integer with = = [a]y;. Then p? | a, p3 | a + 1, etc., up to p? | a + (n — 1).

Problem 4. Let a,b € Z be coprime. Show that for every ¢ € Z there exists n € Z
such that
(an+0b,c) = 1.

Hint: use the Chinese Remainder Theorem to find n such that (an+b) modp = 1 modp
for every prime factor p of ¢ that does not divide a.

Solution 4. Let {pi,...,px} be the set of primes which divide ¢, but not a, with p; # p;
for i # j. Let M = p;---pg. By the CRT there is x € Z/MZ with

v mod ps — [al;[1 — b,
for all i € {1,...,k}. Note that [a],, is invertible since we assumed p; t a. Let n € Z be
a representative of x, that is x = [n]y;. Then [an + b],, = [1],, for all i.

Now assume that (an + b,¢) > 1. Then there is a prime number p dividing (an + b, ¢).
In particular, p | ¢ and p | an + b. We distinguish two cases: if p | a, then p divides
b = (an + b) — an, which is a contradiction to a, b being coprime. On the other hand,
if p 1 a, then p = p; for some ¢ € {1,...,k}, so [an + b], = [1],. But we also know
[an 4 b], = [0],. This is also a contradiction, so (an +b,c¢) = 1.

Problem 5. The goal of this problem is to prove a generalization of the Chinese Re-
mainder Theorem for integers which are not pairwise coprime.

a) Let my, my be any integers greater than 1, and set M = lem(my, my) and m =
ged(my, msy). Show that the map

fi ZJMZ — Z)miZ x Z./moT.

a mod M + (a mod my,a mod my)
is well-defined and injective. Show that its image is

f(Z/MZ) = {(x1,25) | x1 mod m = x5 mod m}.



b) (optional) Let myq, ..., m, be integers greater than 1 and let M be the least common
multiple of all of them. Show that the map

ZIMZ — Z)mnZ X - -+ X L) maZ

amod M — (amodmy,...,amod m,)
is well-defined and injective, and that its image is
{(x1,...,2,) | © mod m;; = x; mod my; for all 1 <i,j <n},

where m;; = ged(m;, m;).

Hint: use part a) and induction.

Solution 5.

a) We showed in class that the maps Z/MZ7Z — 7Z/m;Z,a mod M — a mod m; are
well-defined when m; | M. The map f is just composed of these.

To show injectivity, assume that © € Z/MZ and a € Z with x = [a]y, such that
f(z) = ([0]m,, [0]m,). This means m; | a and my | a. If we write
mlzpil...p;ck’ m2:p]1.1...pi;k

fqr distinct primes pq,...,p; and iy J1s - Je 2 0. we see that péﬁ | a and
Pl | a for cach ¢ € {1,... Kk}, so pi™U7 | g for each £. But this means that

max{i1,51} max{i,jx }
pl .. .pk ‘ a

(using Lemma 777). So M | a, i.e. © = [0]y.
Now if z,2' € Z/MZ with f(z) = f(2'), then it is easy to see that f(z — ') =
([0} [0]m, ), and so by the above x — 2’ = [0]y, i.e. x = 2. So f is injective.

Let
A = {(x1,22) | 1 mod m = xo mod m}.

It is easy to see that f(Z/MZ) C A: this is because
(a mod my) mod m = a mod m = (a mod msy) mod m.

For fixed 1 € Z/myZ, the set of xy € Z/moZ such that (z1,x2) € A has exactly
mo/m elements. So |A| = mymy/m = M (see the question from the midterm exam).
But since f is injective, we also have |f(Z/MZ)| = M. Therefore, f(Z/MZ) = A.



