$$
\text { Fall } 2021 \text { - Math 328K - } 55385
$$

Homework 7 Solutions

Problem 1. Use the Chinese Remainder Theorem and Hensel's Lemma to find all solutions of the following polynomial equations.
a) $x^{2}+x+34=0$ in $\mathbb{Z} / 81 \mathbb{Z}$
b) $x^{2}+x+47=0$ in $\mathbb{Z} / 2401 \mathbb{Z}$
c) $x^{6}-2 x^{5}-35=0$ in $\mathbb{Z} / 6125 \mathbb{Z}$

Solution 1.

a) Let $f(x)=x^{2}+x+34$, with derivative $f^{\prime}(x)=2 x+1$. We compute the solutions of $f(x)=0$ modulo $3,9,27$, and 81 .
Modulo 3, we have $f(x) \bmod 3=x^{2}+x+1 \bmod 3$, so $f\left([0]_{3}\right)=[1]_{3}, f([1])=[0]_{3}$ and $f([2])=[1]_{3}$. This means $[1]_{3}$ is the only solution in $\mathbb{Z} / 3 \mathbb{Z}$.
To find which lifts of $[1]_{3}$ to $\mathbb{Z} / 9 \mathbb{Z}$ are solutions, we use Hensel's Lemma. Since $\left[f^{\prime}(1)\right]_{3}=[0]_{3}$ we are in the first case of Hensel's Lemma, i.e. every lift is a solution, or none of them. The lifts are $[1]_{9},[4]_{9}$ and $[7]_{9}$. Since $f\left([1]_{9}\right)=[1+1+34]_{9}=[0]_{9}$, $[1]_{9}$ is a solution, and therefore $[4]_{9}$ and $[7]_{9}$ are also solutions. These are all solutions modulo 9.

The lifts of $[1]_{9}$ to $\mathbb{Z} / 27 \mathbb{Z}$ are $[1]_{27},[10]_{27},[19]_{27}$. Since $f\left([1]_{27}\right)=[1+1+34]_{27}=[9]_{27}$, none of these are solutions. The lifts of $[4]_{9}$ are $[4]_{27},[13]_{27},[22]_{27}$. Since $f\left([4]_{27}\right)=$ $[16+4+34]_{27}=[0]_{27}$, all of these are solutions. The lifts of $[7]_{9}$ are $[7]_{27},[16]_{27},[25]_{27}$. Since $f\left([7]_{27}\right)=[49+7+34]_{27}=[9]_{27}$, so none of these are solutions. Therefore, the solutions modulo 27 are $[4]_{27},[13]_{27},[22]_{27}$.

The lifts of $[4]_{27}$ to $\mathbb{Z} / 81 \mathbb{Z}$ are $[4]_{81},[31]_{81},[58]_{81}$. Since $f\left([4]_{81}\right)=[16+4+34]_{81}=$ $[54]_{81}$, none of these are solutions. The lifts of $[13]_{27}$ are $[13]_{81},[40]_{81},[67]_{81}$. Since $f\left([13]_{81}\right)=[169+13+34]_{81}=[54]_{81}$, none of these are solutions. The lifts of $[22]_{27}$ are $[22]_{81},[49]_{81},[76]_{81}$. Since $f\left([22]_{81}\right)=[484+22+34]_{81}=[54]_{81}$, none of these are solutions. So there are no solutions in $\mathbb{Z} / 81 \mathbb{Z}$.
b) Let $g(x)=x^{2}+x+47$, then $g^{\prime}(x)=2 x+1$. Since $2401=7^{4}$, we again find solutions of $g(x)=0$ modulo $7,7^{2}=49,7^{3}=343$, and finally 7^{4}.

To find solutions in $\mathbb{Z} / 7 \mathbb{Z}$, we can just try out all possibilities, or use that

$$
[g(a)]_{7}=\left[a^{2}+a-2\right]_{7}=[(a-1)(a+2)]_{7} .
$$

So if $[a]_{7}$ is a solution, then $7 \mid(a-1)(a+2)$, so either $7 \mid a-1$ or $7 \mid a+2$. So the two solutions in $\mathbb{Z} / 7 \mathbb{Z}$ are $[1]_{7}$ and $[-2]_{7}=[5]_{7}$.

Now $\left[g^{\prime}(1)\right]_{7}=[3]_{7}$ and $\left[g^{\prime}(5)\right]_{7}=[0]_{7}$, so $[3]_{7}$ has a unique lift to $\mathbb{Z} / 7^{k} \mathbb{Z}$ which is a solution, for all k, while we have to use the first case of Hensel's Lemma for $[5]_{7}$.
To find the lifts of $[1]_{7}$ which is are solutions, we compute $-\left[g^{\prime}(1)\right]_{7}^{-1}\left[\frac{g(1)}{7}\right]_{7}=-[3]_{7}^{-1}[7]_{7}=$ $[0]_{7}$, so $[1+0 \cdot 7]_{49}=[1]_{49}$ is the solution in $\mathbb{Z} / 49 \mathbb{Z}$. Next, $-\left[g^{\prime}(1)\right]_{7}^{-1}\left[\frac{g(1)}{49}\right]_{7}=$ $-[3]_{7}^{-1}[1]_{7}=[2]_{7}$, so $[1+2 \cdot 49]_{343}=[99]_{343}$ is the solution in $\mathbb{Z} / 343 \mathbb{Z}$. Finally, $-\left[g^{\prime}(1)\right]_{y}^{-1}\left[\frac{g(99)}{343}\right]_{7}=[2]_{7}$, so $[99+2 \cdot 343]_{2401}=[785]_{2401}$ is the solution in $\mathbb{Z} / 2401 \mathbb{Z}$. Indeed, a quick check with a calculator confirms that $[g(785)]_{2401}=[617057]_{2401}=$ $[0]_{2401}$.
To find the lifts of $[5]_{7}$ which are solutions, we use the same strategy as in a). The lifts of $[5]_{7}$ in $\mathbb{Z} / 49 \mathbb{Z}$ are

$$
[5]_{49},[12]_{49},[19]_{49},[26]_{49},[33]_{49},[40]_{49},[47]_{49}
$$

Since $[g(5)]_{49}=[41]_{49}$, none of these are solutions. So the only solution to $g(x)=0$ in $\mathbb{Z} / 2401 \mathbb{Z}$ is $[785]_{2401}$.
c) Since $6125=5^{3} \cdot 7^{2}$ we first find solutions modulo $5,5^{2}, 5^{3}, 7$, and 7^{2}, and then use the Chinese Remainder Theorem to put them together to solutions modulo 6125.
Let $h(x)=x^{6}-2 x^{5}-35$, then $h^{\prime}(x)=6 x^{5}-10 x^{4}$. Note that $[h(x)]_{5}=\left[x^{2}-2 x\right]_{5}=$ $[x(x-2)]$ by Fermat's little theorem, so the solutions in $\mathbb{Z} / 5 \mathbb{Z}$ are $[0]_{5}$ and $[2]_{5}$. We have $\left[h^{\prime}(0)\right]_{5}=[0]_{5}$ and $\left[h^{\prime}(2)\right]_{5}=[2]_{5}$.

The lifts of $[0]_{5}$ to $\mathbb{Z} / 25 \mathbb{Z}$ are $[0]_{25},[5]_{25},[10]_{25},[15]_{25},[20]_{25}$. Since $[h(0)]_{25}=[15]_{25}$, none of these are solutions modulo 25 .

We have $-\left[h^{\prime}(2)\right]_{5}^{-1} \cdot\left[\frac{h(2)}{5}\right]_{5}=[2]_{5} \cdot[-7]_{5}=[1]_{5}$, so $[2+1 \cdot 5]_{25}=[7]_{25}$ is the solution modulo 25. Furthermore, $-\left[h^{\prime}(2)\right]_{5}^{-1} \cdot\left[\frac{h(7)}{25}\right]_{5}=[2]_{5} \cdot\left[\frac{(7-2) \cdot 7^{5}-5 \cdot 7}{5^{2}}\right]_{5}=[2]_{5} \cdot\left[\frac{7 \cdot\left(7^{4}-1\right)}{5}\right]_{5}=$ $\left[\frac{2 \cdot 7 \cdot 2400}{5}\right]_{5}=[0]_{5}$, so $[7+0 \cdot 25]_{125}=[7]_{125}$ is the unique solution in $\mathbb{Z} / 125 \mathbb{Z}$.
To find solutions modulo 7 and 49, note that $[h(x)]_{7}=\left[x^{5}(x-2)\right]_{7}$, so the only solutions in $\mathbb{Z} / 7 \mathbb{Z}$ are $[0]_{7}$ and $[2]_{7}$. Then $\left[h^{\prime}(0)\right]_{7}=[0]_{7}$ and $\left[h^{\prime}(2)\right]_{7}=[32]_{7}=[4]_{7}$.

The lifts of $[0]_{7}$ to $\mathbb{Z} / 49 \mathbb{Z}$ are $[0],[7],[14],[21],[28],[35],[42]$. Since $[h(0)]_{49}=[-35]_{49} \neq$ $[0]_{49}$, none of them are solutions. We have $-\left[h^{\prime}(2)\right]_{7}^{-1} \cdot\left[\frac{h(2)}{7}\right]_{7}=-[4]_{7}^{-1} \cdot\left[\frac{-35}{7}\right]_{7}=$ $-[2]_{7} \cdot[-5]_{7}=[3]_{7}$, so the unique solution modulo 49 is $[2+3 \cdot 7]_{49}=[23]_{49}$.

Finally, we use the Chinese Remainder Theorem to construct the unique solution in $\mathbb{Z} / 6125 \mathbb{Z}$ out of the solutions $[7]_{125}$ and $[23]_{49}$. To this end, we need to find the inverses of $[125]_{49}$ and $[49]_{125}$. It is easy to guess that $[5]_{49}^{-1}=[10]_{49}$ and $[7]_{125}^{-1}=[18]_{125}$, so $[125]_{49}^{-1}=\left[10^{3}\right]_{49}=[20]_{49}$ and $[49]_{125}^{-1}=\left[18^{2}\right]_{125}=[74]_{125}$. Hence the unique solution modulo $\mathbb{Z} / 6125 \mathbb{Z}$ is

$$
[7 \cdot 49 \cdot 74+23 \cdot 125 \cdot 20]_{6125}=[82882]_{6125}=[3257]_{6125} .
$$

Indeed, $3257^{6}-2 \cdot 3257^{5}-35=1192998192645855725500$ is divisible by 6125 .
Problem 2. Find all solutions $x \in \mathbb{Z}$ of the following systems of congruences
a)

$$
\begin{aligned}
& x \equiv 4 \quad(\bmod 11) \\
& x \equiv 3 \quad(\bmod 17)
\end{aligned}
$$

b)

$$
\begin{aligned}
2 x & \equiv 3 \\
5 x & (\bmod 5) \\
3 x & \equiv 4 \\
& (\bmod 6) \\
x & \equiv 5 \quad(\bmod 7)
\end{aligned}
$$

Solution 2.

a) We have $[11]_{17}^{-1}=[-3]_{17}$ and $[17]_{11}^{-1}=[2]_{11}$, so by the CRT

$$
[x]_{187}=[4 \cdot 17 \cdot 2+3 \cdot 11 \cdot(-3)]_{187}=[37]_{187}
$$

The solutions are all integers of the form $x=37+187 k$, for $k \in \mathbb{Z}$.
b) Assume x solves the system of congruences. Since $[5]_{6}^{-1}=[5]_{6}$ the second equation is equivalent to $[x]_{6}=[10]_{6}$. This implies $[x]_{2}=[0]_{2}$. On the other hand, the fourth equation implies $[x]_{2}=[1]_{2}$. This is a contradiction, so there is no solution.

Problem 3. Show that for any $n \in \mathbb{Z}_{+}$there are n consecutive integers

$$
a, a+1, \ldots, a+(n-1)
$$

such that each of them is divisible by a perfect square (an integer of the form x^{2}, where x is an integer greater than 1).
Hint: Find an integer a such that $a+(i-1)$ is divisible by p_{i}^{2} where p_{i} is the i-th prime number, for all $i \in\{1, \ldots, n\}$. That is, a is divisible by $4, a+1$ is divisible by $9, a+2$ is divisible by 25, etc.

Solution 3. Let p_{i} be the i-th prime number, and let $M=\prod_{i=1}^{n} p_{i}^{2}$. By the Chinese Remainder Theorem, there exists $x \in \mathbb{Z} / M \mathbb{Z}$ with

$$
\left(x \bmod p_{1}^{2}, x \bmod p_{2}^{2}, \ldots, x \bmod p_{n}^{2}\right)=\left([0]_{p_{1}^{2}},[-1]_{p_{2}^{2}}, \ldots,[-n+1]_{p_{n}^{2}}\right)
$$

Let a be any integer with $x=[a]_{M}$. Then $p_{1}^{2}\left|a, p_{2}^{2}\right| a+1$, etc., up to $p_{n}^{2} \mid a+(n-1)$.

Problem 4. Let $a, b \in \mathbb{Z}$ be coprime. Show that for every $c \in \mathbb{Z}$ there exists $n \in \mathbb{Z}$ such that

$$
(a n+b, c)=1
$$

Hint: use the Chinese Remainder Theorem to find n such that $(a n+b) \bmod p=1 \bmod p$ for every prime factor p of c that does not divide a.

Solution 4. Let $\left\{p_{1}, \ldots, p_{k}\right\}$ be the set of primes which divide c, but not a, with $p_{i} \neq p_{j}$ for $i \neq j$. Let $M=p_{1} \cdots p_{k}$. By the CRT there is $x \in \mathbb{Z} / M \mathbb{Z}$ with

$$
x \bmod p_{i}=[a]_{p_{i}}^{-1}[1-b]_{p_{i}}
$$

for all $i \in\{1, \ldots, k\}$. Note that $[a]_{p_{i}}$ is invertible since we assumed $p_{i} \nmid a$. Let $n \in \mathbb{Z}$ be a representative of x, that is $x=[n]_{M}$. Then $[a n+b]_{p_{i}}=[1]_{p_{i}}$ for all i.
Now assume that $(a n+b, c)>1$. Then there is a prime number p dividing $(a n+b, c)$. In particular, $p \mid c$ and $p \mid a n+b$. We distinguish two cases: if $p \mid a$, then p divides $b=(a n+b)-a n$, which is a contradiction to a, b being coprime. On the other hand, if $p \nmid a$, then $p=p_{i}$ for some $i \in\{1, \ldots, k\}$, so $[a n+b]_{p}=[1]_{p}$. But we also know $[a n+b]_{p}=[0]_{p}$. This is also a contradiction, so $(a n+b, c)=1$.

Problem 5. The goal of this problem is to prove a generalization of the Chinese Remainder Theorem for integers which are not pairwise coprime.
a) Let m_{1}, m_{2} be any integers greater than 1 , and set $M=\operatorname{lcm}\left(m_{1}, m_{2}\right)$ and $m=$ $\operatorname{gcd}\left(m_{1}, m_{2}\right)$. Show that the map

$$
\begin{aligned}
f: \quad \mathbb{Z} / M \mathbb{Z} & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \\
a \bmod M & \mapsto\left(a \bmod m_{1}, a \bmod m_{2}\right)
\end{aligned}
$$

is well-defined and injective. Show that its image is

$$
f(\mathbb{Z} / M \mathbb{Z})=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \bmod m=x_{2} \bmod m\right\} .
$$

b) (optional) Let m_{1}, \ldots, m_{n} be integers greater than 1 and let M be the least common multiple of all of them. Show that the map

$$
\begin{aligned}
\mathbb{Z} / M \mathbb{Z} & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{n} \mathbb{Z} \\
a \bmod M & \mapsto\left(a \bmod m_{1}, \cdots, a \bmod m_{n}\right)
\end{aligned}
$$

is well-defined and injective, and that its image is

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \bmod m_{i j}=x_{j} \bmod m_{i j} \text { for all } 1 \leq i, j \leq n\right\}
$$

where $m_{i j}=\operatorname{gcd}\left(m_{i}, m_{j}\right)$.
Hint: use part a) and induction.

Solution 5.

a) We showed in class that the maps $\mathbb{Z} / M \mathbb{Z} \rightarrow \mathbb{Z} / m_{i} \mathbb{Z}, a \bmod M \mapsto a \bmod m_{i}$ are well-defined when $m_{i} \mid M$. The map f is just composed of these.
To show injectivity, assume that $x \in \mathbb{Z} / M \mathbb{Z}$ and $a \in \mathbb{Z}$ with $x=[a]_{M}$, such that $f(x)=\left([0]_{m_{1}},[0]_{m_{2}}\right)$. This means $m_{1} \mid a$ and $m_{2} \mid a$. If we write

$$
m_{1}=p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}, \quad m_{2}=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}
$$

for distinct primes p_{1}, \ldots, p_{k} and $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k} \geq 0$. we see that $p_{\ell}^{i_{\ell}} \mid a$ and $p_{\ell}^{j_{\ell}} \mid a$ for each $\ell \in\{1, \ldots, k\}$, so $p_{\ell}^{\max \left\{i_{\ell}, j_{\ell}\right\}} \mid a$ for each ℓ. But this means that

$$
p_{1}^{\max \left\{i_{1}, j_{1}\right\}} \cdots p_{k}^{\max \left\{i_{k}, j_{k}\right\}} \mid a
$$

(using Lemma ???). So $M \mid a$, i.e. $x=[0]_{M}$.
Now if $x, x^{\prime} \in \mathbb{Z} / M \mathbb{Z}$ with $f(x)=f\left(x^{\prime}\right)$, then it is easy to see that $f\left(x-x^{\prime}\right)=$ $\left([0]_{m_{1}},[0]_{m_{2}}\right)$, and so by the above $x-x^{\prime}=[0]_{M}$, i.e. $x=x^{\prime}$. So f is injective.

Let

$$
A=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \bmod m=x_{2} \bmod m\right\}
$$

It is easy to see that $f(\mathbb{Z} / M \mathbb{Z}) \subset A$: this is because

$$
\left(a \bmod m_{1}\right) \bmod m=a \bmod m=\left(a \bmod m_{2}\right) \bmod m .
$$

For fixed $x_{1} \in \mathbb{Z} / m_{1} \mathbb{Z}$, the set of $x_{2} \in \mathbb{Z} / m_{2} \mathbb{Z}$ such that $\left(x_{1}, x_{2}\right) \in A$ has exactly m_{2} / m elements. So $|A|=m_{1} m_{2} / m=M$ (see the question from the midterm exam). But since f is injective, we also have $|f(\mathbb{Z} / M \mathbb{Z})|=M$. Therefore, $f(\mathbb{Z} / M \mathbb{Z})=A$.

