
Fall 2021 – Math 328K – 55385

Homework 7 Solutions

Problem 1. Use the Chinese Remainder Theorem and Hensel’s Lemma to find all
solutions of the following polynomial equations.

a) x2 + x+ 34 = 0 in Z/81Z

b) x2 + x+ 47 = 0 in Z/2401Z

c) x6 − 2x5 − 35 = 0 in Z/6125Z

Solution 1.

a) Let f(x) = x2 + x+34, with derivative f ′(x) = 2x+1. We compute the solutions of
f(x) = 0 modulo 3, 9, 27, and 81.

Modulo 3, we have f(x) mod 3 = x2 + x + 1 mod 3, so f([0]3) = [1]3, f([1]) = [0]3
and f([2]) = [1]3. This means [1]3 is the only solution in Z/3Z.

To find which lifts of [1]3 to Z/9Z are solutions, we use Hensel’s Lemma. Since
[f ′(1)]3 = [0]3 we are in the first case of Hensel’s Lemma, i.e. every lift is a solution,
or none of them. The lifts are [1]9, [4]9 and [7]9. Since f([1]9) = [1 + 1 + 34]9 = [0]9,
[1]9 is a solution, and therefore [4]9 and [7]9 are also solutions. These are all solutions
modulo 9.

The lifts of [1]9 to Z/27Z are [1]27, [10]27, [19]27. Since f([1]27) = [1+1+34]27 = [9]27,
none of these are solutions. The lifts of [4]9 are [4]27, [13]27, [22]27. Since f([4]27) =
[16+4+34]27 = [0]27, all of these are solutions. The lifts of [7]9 are [7]27, [16]27, [25]27.
Since f([7]27) = [49+ 7+ 34]27 = [9]27, so none of these are solutions. Therefore, the
solutions modulo 27 are [4]27, [13]27, [22]27.

The lifts of [4]27 to Z/81Z are [4]81, [31]81, [58]81. Since f([4]81) = [16 + 4 + 34]81 =
[54]81, none of these are solutions. The lifts of [13]27 are [13]81, [40]81, [67]81. Since
f([13]81) = [169 + 13 + 34]81 = [54]81, none of these are solutions. The lifts of [22]27
are [22]81, [49]81, [76]81. Since f([22]81) = [484 + 22+ 34]81 = [54]81, none of these are
solutions. So there are no solutions in Z/81Z.

b) Let g(x) = x2+x+47, then g′(x) = 2x+1. Since 2401 = 74, we again find solutions
of g(x) = 0 modulo 7, 72 = 49, 73 = 343, and finally 74.
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To find solutions in Z/7Z, we can just try out all possibilities, or use that

[g(a)]7 = [a2 + a− 2]7 = [(a− 1)(a+ 2)]7.

So if [a]7 is a solution, then 7 | (a− 1)(a+ 2), so either 7 | a− 1 or 7 | a+ 2. So the
two solutions in Z/7Z are [1]7 and [−2]7 = [5]7.

Now [g′(1)]7 = [3]7 and [g′(5)]7 = [0]7, so [3]7 has a unique lift to Z/7kZ which is a
solution, for all k, while we have to use the first case of Hensel’s Lemma for [5]7.

To find the lifts of [1]7 which is are solutions, we compute−[g′(1)]−17 [g(1)
7
]7 = −[3]−17 [7]7 =

[0]7, so [1 + 0 · 7]49 = [1]49 is the solution in Z/49Z. Next, −[g′(1)]−17 [g(1)
49

]7 =
−[3]−17 [1]7 = [2]7, so [1 + 2 · 49]343 = [99]343 is the solution in Z/343Z. Finally,
−[g′(1)]−1y [g(99)

343
]7 = [2]7, so [99 + 2 · 343]2401 = [785]2401 is the solution in Z/2401Z.

Indeed, a quick check with a calculator confirms that [g(785)]2401 = [617057]2401 =
[0]2401.

To find the lifts of [5]7 which are solutions, we use the same strategy as in a). The
lifts of [5]7 in Z/49Z are

[5]49, [12]49, [19]49, [26]49, [33]49, [40]49, [47]49.

Since [g(5)]49 = [41]49, none of these are solutions. So the only solution to g(x) = 0
in Z/2401Z is [785]2401.

c) Since 6125 = 53 · 72 we first find solutions modulo 5, 52, 53, 7, and 72, and then use
the Chinese Remainder Theorem to put them together to solutions modulo 6125.

Let h(x) = x6 − 2x5 − 35, then h′(x) = 6x5 − 10x4. Note that [h(x)]5 = [x2 − 2x]5 =
[x(x− 2)] by Fermat’s little theorem, so the solutions in Z/5Z are [0]5 and [2]5. We
have [h′(0)]5 = [0]5 and [h′(2)]5 = [2]5.

The lifts of [0]5 to Z/25Z are [0]25, [5]25, [10]25, [15]25, [20]25. Since [h(0)]25 = [15]25,
none of these are solutions modulo 25.

We have −[h′(2)]−15 · [
h(2)
5
]5 = [2]5 · [−7]5 = [1]5, so [2 + 1 · 5]25 = [7]25 is the solution

modulo 25. Furthermore, −[h′(2)]−15 · [
h(7)
25

]5 = [2]5 · [ (7−2)·7
5−5·7

52
]5 = [2]5 · [7·(7

4−1)
5

]5 =
[2·7·2400

5
]5 = [0]5, so [7 + 0 · 25]125 = [7]125 is the unique solution in Z/125Z.

To find solutions modulo 7 and 49, note that [h(x)]7 = [x5(x − 2)]7, so the only
solutions in Z/7Z are [0]7 and [2]7. Then [h′(0)]7 = [0]7 and [h′(2)]7 = [32]7 = [4]7.

The lifts of [0]7 to Z/49Z are [0], [7], [14], [21], [28], [35], [42]. Since [h(0)]49 = [−35]49 6=
[0]49, none of them are solutions. We have −[h′(2)]−17 · [

h(2)
7
]7 = −[4]−17 · [−357 ]7 =

−[2]7 · [−5]7 = [3]7, so the unique solution modulo 49 is [2 + 3 · 7]49 = [23]49.
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Finally, we use the Chinese Remainder Theorem to construct the unique solution in
Z/6125Z out of the solutions [7]125 and [23]49. To this end, we need to find the inverses
of [125]49 and [49]125. It is easy to guess that [5]−149 = [10]49 and [7]−1125 = [18]125, so
[125]−149 = [103]49 = [20]49 and [49]−1125 = [182]125 = [74]125. Hence the unique solution
modulo Z/6125Z is

[7 · 49 · 74 + 23 · 125 · 20]6125 = [82882]6125 = [3257]6125.

Indeed, 32576 − 2 · 32575 − 35 = 1192998192645855725500 is divisible by 6125.

Problem 2. Find all solutions x ∈ Z of the following systems of congruences

a)
x ≡ 4 (mod 11)

x ≡ 3 (mod 17)

b)
2x ≡ 3 (mod 5)

5x ≡ 2 (mod 6)

3x ≡ 4 (mod 7)

x ≡ 5 (mod 8)

Solution 2.

a) We have [11]−117 = [−3]17 and [17]−111 = [2]11, so by the CRT

[x]187 = [4 · 17 · 2 + 3 · 11 · (−3)]187 = [37]187

The solutions are all integers of the form x = 37 + 187k, for k ∈ Z.

b) Assume x solves the system of congruences. Since [5]−16 = [5]6 the second equation
is equivalent to [x]6 = [10]6. This implies [x]2 = [0]2. On the other hand, the fourth
equation implies [x]2 = [1]2. This is a contradiction, so there is no solution.

Problem 3. Show that for any n ∈ Z+ there are n consecutive integers

a, a+ 1, . . . , a+ (n− 1)

such that each of them is divisible by a perfect square (an integer of the form x2, where
x is an integer greater than 1).

Hint: Find an integer a such that a+ (i− 1) is divisible by p2i where pi is the i-th prime
number, for all i ∈ {1, . . . , n}. That is, a is divisible by 4, a+ 1 is divisible by 9, a+ 2
is divisible by 25, etc.
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Solution 3. Let pi be the i–th prime number, and let M =
∏n

i=1 p
2
i . By the Chinese

Remainder Theorem, there exists x ∈ Z/MZ with

(x mod p21, x mod p22, . . . , x mod p2n) = ([0]p21 , [−1]p22 , . . . , [−n+ 1]p2n).

Let a be any integer with x = [a]M . Then p21 | a, p22 | a+ 1, etc., up to p2n | a+ (n− 1).

Problem 4. Let a, b ∈ Z be coprime. Show that for every c ∈ Z there exists n ∈ Z
such that

(an+ b, c) = 1.

Hint: use the Chinese Remainder Theorem to find n such that (an+ b)mod p = 1mod p
for every prime factor p of c that does not divide a.

Solution 4. Let {p1, . . . , pk} be the set of primes which divide c, but not a, with pi 6= pj
for i 6= j. Let M = p1 · · · pk. By the CRT there is x ∈ Z/MZ with

x mod pi = [a]−1pi
[1− b]pi

for all i ∈ {1, . . . , k}. Note that [a]pi is invertible since we assumed pi - a. Let n ∈ Z be
a representative of x, that is x = [n]M . Then [an+ b]pi = [1]pi for all i.

Now assume that (an + b, c) > 1. Then there is a prime number p dividing (an + b, c).
In particular, p | c and p | an + b. We distinguish two cases: if p | a, then p divides
b = (an + b) − an, which is a contradiction to a, b being coprime. On the other hand,
if p - a, then p = pi for some i ∈ {1, . . . , k}, so [an + b]p = [1]p. But we also know
[an+ b]p = [0]p. This is also a contradiction, so (an+ b, c) = 1.

Problem 5. The goal of this problem is to prove a generalization of the Chinese Re-
mainder Theorem for integers which are not pairwise coprime.

a) Let m1,m2 be any integers greater than 1, and set M = lcm(m1,m2) and m =
gcd(m1,m2). Show that the map

f : Z/MZ→ Z/m1Z× Z/m2Z
a mod M 7→ (a mod m1, a mod m2)

is well–defined and injective. Show that its image is

f(Z/MZ) = {(x1, x2) | x1 mod m = x2 mod m}.
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b) (optional) Let m1, . . . ,mn be integers greater than 1 and let M be the least common
multiple of all of them. Show that the map

Z/MZ→ Z/m1Z× · · · × Z/mnZ
amodM 7→ (amodm1, . . . , a mod mn)

is well–defined and injective, and that its image is

{(x1, . . . , xn) | xi mod mij = xj mod mij for all 1 ≤ i, j ≤ n},

where mij = gcd(mi,mj).

Hint: use part a) and induction.

Solution 5.

a) We showed in class that the maps Z/MZ → Z/miZ, a mod M 7→ a mod mi are
well–defined when mi |M . The map f is just composed of these.

To show injectivity, assume that x ∈ Z/MZ and a ∈ Z with x = [a]M , such that
f(x) = ([0]m1 , [0]m2). This means m1 | a and m2 | a. If we write

m1 = pi11 · · · p
ik
k , m2 = pj11 · · · p

jk
k

for distinct primes p1, . . . , pk and i1, . . . , ik, j1, . . . , jk ≥ 0. we see that pi`` | a and
pj`` | a for each ` ∈ {1, . . . , k}, so p

max{i`,j`}
` | a for each `. But this means that

p
max{i1,j1}
1 · · · pmax{ik,jk}

k | a

(using Lemma ???). So M | a, i.e. x = [0]M .

Now if x, x′ ∈ Z/MZ with f(x) = f(x′), then it is easy to see that f(x − x′) =
([0]m1 , [0]m2), and so by the above x− x′ = [0]M , i.e. x = x′. So f is injective.

Let
A = {(x1, x2) | x1 mod m = x2 mod m}.

It is easy to see that f(Z/MZ) ⊂ A: this is because

(a mod m1) mod m = a mod m = (a mod m2) mod m.

For fixed x1 ∈ Z/m1Z, the set of x2 ∈ Z/m2Z such that (x1, x2) ∈ A has exactly
m2/m elements. So |A| = m1m2/m = M (see the question from the midterm exam).
But since f is injective, we also have |f(Z/MZ)| = M . Therefore, f(Z/MZ) = A.
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