Fall 2021 — Math 328K — 55385

Homework 8 Solutions

Problem 1. What are the last four decimal digits of the number 11159997

Solution 1. Let z = [1115999]10000. We have
$(10000) = ¢(2M)0(5*) = (2* — 2%)(5* — 5°) = 4000,

so 1% = [1] for all z € (Z/10000Z)*. Now 11 and 10000 are coprime, so [11] €
(Z/10000Z)*, and therefore

(1] = [11]1%9%0 = ([12)1%%)* = [1]" = [1].

So x = [11]7'. We could compute this with the extended Euclidean algorithm, but it’s
actually really easy to guess the Bezout coefficients in this case: 10000 — 909 - 11 = 1,
so the Bezout coefficients of 10000 and 11 are 1 and —909. This means that

z = [11]7" = [-909] = [9091],

so the last four digits of 111999 are 9091.

Problem 2. Show the following facts about FEuler’s ¢—function:
a) ¢(n) is even for every n > 3,

b) ¢(n*) = n*~1p(n) for all n,k € N,

c) ¢(n) > +/nforall n € N\ {2,6},

d) If m | n, then ¢(m) | ¢(n).

Solution 2.

a) If n = p¥ is a prime power, then ¢(p*) = p*~*(p — 1). If p is odd, then p — 1 is even,
and if p = 2 and k > 2, then p*~! is even. So ¢(p*) is even unless p* = 2. If n > 3
then the prime power decomposition of n always contains a prime power different
from 2. Since ¢ is multiplicative, this is enough for ¢(n) to be even.

b) We proved in class that ¢(n)/n is the product [ (1 —p 1), where p goes through all
prime divisors of n. But n* has the same prime divisors as n, so ¢(n¥)/n* = ¢(n)/n.
Multiply by n* to get the statement we want.
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¢) The function f(z) = X% is decreasing if z > 1. Its values on the first few primes

z—1
are f(2) = V2, f(3) = \/73 and f(5) = \/Tg. So f(p) < 1 for all primes p > 3 and
F2)f(p) < f(2)£(5) = Y0 < 1 for all primes p > 5.

Let n be a positive integer and P the set of its prime divisors. Then
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So if we can show that [[ ., f(p) < 1, then ¢(n) > \/n would follow. If 2 ¢ P then
f(p) < 1forallpe P, so][]pf(p) <1. If 2 € P but P also contains a prime

q =5, then [[p f(p) < f(2)f(g) < L.

The remaining cases are P = {2} and P = {2,3}. That is, n = 2’3’ for integers
i>1and j>0.If j =0 then ¢(n) =21 = 2. If j > 1 then ¢(n) = ¢(2")p(3) =
2i-1.9.3i-1— 1

If n > 9 then % > % > /n, so we are done, both in the case j = 0 and j > 1. The
only remaining possibilities for n are 1,2,3,4,6,8. We directly compute

n |1 2 3 4 6 8
o(n)* |1 1 4 4 4 16

So ¢(n) > y/n in all cases except n =2 or n = 6.
First observe that, if p is a prime and 0 < j < 4, then ¢(p’) | ¢(p'). If 5 = 0 this is
trivially true, and otherwise ¢(p’) = p/~!(p—1) is also a divisor of ¢(p') = p*~}(p—1).

Now write n = plfl- . ~p§c’c for distinct primes py,...,py and 4y,..., 9 > 1. If m | n,
then m = pi' ---p)F with j, < i, for all £. So ¢(p}) | ¢(p,S) for all £ and therefore
¢(m) | ¢(n).

Problem 3. Let n = p; - - p be a product of distinct (odd) primes and let = € Z/nZ.
Show that

g+ = g,

Solution 3. Let y = 2*™*+! — z. We want to show that y = [0]. By the Chinese
Remainder Theorem, it is enough to show that ymodp; = Omodp; for all i € {1,... k}.
Since ¢ is multiplicative, we have ¢(p;) | ¢(n), say ¢(n) = ¢(p;)d; for some (positive)
integer d;. So

y mod p; = ((z mod p;)?"))% (z mod p;) — (x mod p;).

This is [0] if £ mod p; = [0], but also if  mod p; # [0] by Euler’s Theorem.



Problem 4. Let m € N. The goal of this problem is to find all integers which are
congruent modulo m to their own square. In other words, we want to find all solutions
of the equation z*> — z = 0 in Z/mZ.

a) Show that, if m is prime, then the only solutions are [0] and [1].
b) Show that, if m is a prime power, then the only solutions are still [0] and [1].

c¢) For general m, let m = p' .. -pi’“ be the prime—power decomposition of m with
p1 < --- < pg prime and iy,...,4, € N. Show there are 2* different solutions of the
equation 22 — z = 0 in Z/mZ, and that these are given by

z‘]- 1.3-—1
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for every tuple (dy,...,8;) € {0,1}*.

Hint: For the last part, use Euler’s theorem and the Chinese remainder theorem.

Solution 4.

a) Clearly [0] and [1] are solutions of the equation z*> —z = 0. Conversely, let z = [a] €
Z/mZ with 2? —z = 0. Then m | a(a — 1). Since m is prime, m | a or m | a — 1. So
la] = [0] or [a] = [1].

b) Let m = p*, p prime, k > 2. We can use Hensel’s Lemma. The derivative of the
polynomial f(z) =2? —zis f'(z) =2z — 1. So

f(0) mod p = —1 mod p # 0 mod p,
/(1) mod p =1 mod p # 0 mod p.

So by Hensel’s Lemma both [0], and [1], have a unique lift to Z/p*Z which is a
solution, these in turn have a unique lift to Z/p*Z etc. So there are exactly two
solutions in Z/p*Z, which we can directly verify to be [0] and [1].

¢) By the Chinese Remainder Theorem there are 2* solutions to the equation in Z /mZ,
which we obtain as follows. If [a;] i, ..., [ak]pik are any solutions in Z/py'Z, . . . , Z/p}* Z,
k

then
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is a solution in Z/mZ, where M; = m/ pj-j and y; is any integer satisfying [yj]pij
i

[Mj]j;, and every solution is of this form. By Euler’s Theorem we can choose y; =
Pj
Qb(pjj)*l
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So
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By part b) we can choose each of the a; to be in the set {0, 1}, and every such choice
gives a different solution in Z/mZ.



