$$
\text { Fall } 2021 \text { - Math } 328 \mathrm{~K} \text { - } 55385
$$

Homework 8 Solutions

Problem 1. What are the last four decimal digits of the number 11^{15999} ?

Solution 1. Let $x=\left[11^{15999}\right]_{10000}$. We have

$$
\phi(10000)=\phi\left(2^{4}\right) \phi\left(5^{4}\right)=\left(2^{4}-2^{3}\right)\left(5^{4}-5^{3}\right)=4000,
$$

so $x^{4000}=[1]$ for all $x \in(\mathbb{Z} / 10000 \mathbb{Z})^{\times}$. Now 11 and 10000 are coprime, so $[11] \in$ $(\mathbb{Z} / 10000 \mathbb{Z})^{\times}$, and therefore

$$
[11] x=[11]^{16000}=\left([11]^{4000}\right)^{4}=[1]^{4}=[1] .
$$

So $x=[11]^{-1}$. We could compute this with the extended Euclidean algorithm, but it's actually really easy to guess the Bezout coefficients in this case: $10000-909 \cdot 11=1$, so the Bezout coefficients of 10000 and 11 are 1 and -909 . This means that

$$
x=[11]^{-1}=[-909]=[9091],
$$

so the last four digits of 11^{15999} are 9091.

Problem 2. Show the following facts about Euler's ϕ-function:
a) $\phi(n)$ is even for every $n \geq 3$,
b) $\phi\left(n^{k}\right)=n^{k-1} \phi(n)$ for all $n, k \in \mathbb{N}$,
c) $\phi(n) \geq \sqrt{n}$ for all $n \in \mathbb{N} \backslash\{2,6\}$,
d) If $m \mid n$, then $\phi(m) \mid \phi(n)$.

Solution 2.

a) If $n=p^{k}$ is a prime power, then $\phi\left(p^{k}\right)=p^{k-1}(p-1)$. If p is odd, then $p-1$ is even, and if $p=2$ and $k \geq 2$, then p^{k-1} is even. So $\phi\left(p^{k}\right)$ is even unless $p^{k}=2$. If $n \geq 3$ then the prime power decomposition of n always contains a prime power different from 2. Since ϕ is multiplicative, this is enough for $\phi(n)$ to be even.
b) We proved in class that $\phi(n) / n$ is the product $\prod_{p}\left(1-p^{-1}\right)$, where p goes through all prime divisors of n. But n^{k} has the same prime divisors as n, so $\phi\left(n^{k}\right) / n^{k}=\phi(n) / n$. Multiply by n^{k} to get the statement we want.
c) The function $f(x)=\frac{\sqrt{x}}{x-1}$ is decreasing if $x>1$. Its values on the first few primes are $f(2)=\sqrt{2}, f(3)=\frac{\sqrt{3}}{2}$ and $f(5)=\frac{\sqrt{5}}{4}$. So $f(p)<1$ for all primes $p \geq 3$ and $f(2) f(p) \leq f(2) f(5)=\frac{\sqrt{10}}{4}<1$ for all primes $p \geq 5$.
Let n be a positive integer and \mathcal{P} the set of its prime divisors. Then

$$
\frac{\phi(n)}{n}=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)=\prod_{p \in \mathcal{P}} \frac{1}{f(p) \sqrt{p}}=\frac{1}{\prod_{p \in \mathcal{P}} f(p)} \cdot \frac{1}{\sqrt{\prod_{p \in \mathcal{P}} p}} \geq \frac{1}{\prod_{p \in \mathcal{P}} f(p)} \cdot \frac{1}{\sqrt{n}}
$$

So if we can show that $\prod_{p \in \mathcal{P}} f(p) \leq 1$, then $\phi(n) \geq \sqrt{n}$ would follow. If $2 \notin \mathcal{P}$ then $f(p)<1$ for all $p \in \mathcal{P}$, so $\prod_{p \in \mathcal{P}} f(p) \leq 1$. If $2 \in \mathcal{P}$ but \mathcal{P} also contains a prime $q \geq 5$, then $\prod_{p \in \mathcal{P}} f(p) \leq f(2) f(q)<1$.
The remaining cases are $\mathcal{P}=\{2\}$ and $\mathcal{P}=\{2,3\}$. That is, $n=2^{i} 3^{j}$ for integers $i \geq 1$ and $j \geq 0$. If $j=0$ then $\phi(n)=2^{i-1}=\frac{n}{2}$. If $j \geq 1$ then $\phi(n)=\phi\left(2^{i}\right) \phi\left(3^{j}\right)=$ $2^{i-1} \cdot 2 \cdot 3^{j-1}=\frac{n}{3}$.

If $n \geq 9$ then $\frac{n}{2} \geq \frac{n}{3} \geq \sqrt{n}$, so we are done, both in the case $j=0$ and $j \geq 1$. The only remaining possibilities for n are $1,2,3,4,6,8$. We directly compute

n	1	2	3	4	6	8
$\phi(n)^{2}$	1	1	4	4	4	16

So $\phi(n) \geq \sqrt{n}$ in all cases except $n=2$ or $n=6$.
d) First observe that, if p is a prime and $0 \leq j \leq i$, then $\phi\left(p^{j}\right) \mid \phi\left(p^{i}\right)$. If $j=0$ this is trivially true, and otherwise $\phi\left(p^{j}\right)=p^{j-1}(p-1)$ is also a divisor of $\phi\left(p^{i}\right)=p^{i-1}(p-1)$.
Now write $n=p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ for distinct primes p_{1}, \ldots, p_{k} and $i_{1}, \ldots, i_{k} \geq 1$. If $m \mid n$, then $m=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$ with $j_{\ell} \leq i_{\ell}$ for all ℓ. So $\phi\left(p_{\ell}^{j_{\ell}}\right) \mid \phi\left(p_{\ell}^{i_{\ell}}\right)$ for all ℓ and therefore $\phi(m) \mid \phi(n)$.

Problem 3. Let $n=p_{1} \cdots p_{k}$ be a product of distinct (odd) primes and let $x \in \mathbb{Z} / n \mathbb{Z}$. Show that

$$
x^{\phi(n)+1}=x .
$$

Solution 3. Let $y=x^{\phi(n)+1}-x$. We want to show that $y=[0]$. By the Chinese Remainder Theorem, it is enough to show that $y \bmod p_{i}=0 \bmod p_{i}$ for all $i \in\{1, \ldots, k\}$. Since ϕ is multiplicative, we have $\phi\left(p_{i}\right) \mid \phi(n)$, say $\phi(n)=\phi\left(p_{i}\right) d_{i}$ for some (positive) integer d_{i}. So

$$
y \bmod p_{i}=\left(\left(x \bmod p_{i}\right)^{\phi\left(p_{i}\right)}\right)^{d_{i}}\left(x \bmod p_{i}\right)-\left(x \bmod p_{i}\right)
$$

This is [0] if $x \bmod p_{i}=[0]$, but also if $x \bmod p_{i} \neq[0]$ by Euler's Theorem.

Problem 4. Let $m \in \mathbb{N}$. The goal of this problem is to find all integers which are congruent modulo m to their own square. In other words, we want to find all solutions of the equation $x^{2}-x=0$ in $\mathbb{Z} / m \mathbb{Z}$.
a) Show that, if m is prime, then the only solutions are [0] and [1].
b) Show that, if m is a prime power, then the only solutions are still [0] and [1].
c) For general m, let $m=p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ be the prime-power decomposition of m with $p_{1}<\cdots<p_{k}$ prime and $i_{1}, \ldots, i_{k} \in \mathbb{N}$. Show there are 2^{k} different solutions of the equation $x^{2}-x=0$ in $\mathbb{Z} / m \mathbb{Z}$, and that these are given by

$$
\sum_{j=1}^{k} \delta_{j}\left(\frac{m}{p_{j}^{i_{j}}}\right)^{p_{j}^{i_{j}}-p_{j}^{i_{j}-1}} \bmod m
$$

for every tuple $\left(\delta_{1}, \ldots, \delta_{k}\right) \in\{0,1\}^{k}$.
Hint: For the last part, use Euler's theorem and the Chinese remainder theorem.

Solution 4.

a) Clearly [0] and [1] are solutions of the equation $x^{2}-x=0$. Conversely, let $x=[a] \in$ $\mathbb{Z} / m \mathbb{Z}$ with $x^{2}-x=0$. Then $m \mid a(a-1)$. Since m is prime, $m \mid a$ or $m \mid a-1$. So $[a]=[0]$ or $[a]=[1]$.
b) Let $m=p^{k}, p$ prime, $k \geq 2$. We can use Hensel's Lemma. The derivative of the polynomial $f(x)=x^{2}-x$ is $f^{\prime}(x)=2 x-1$. So

$$
\begin{aligned}
& f^{\prime}(0) \bmod p=-1 \bmod p \neq 0 \bmod p \\
& f^{\prime}(1) \bmod p=1 \bmod p \neq 0 \bmod p
\end{aligned}
$$

So by Hensel's Lemma both $[0]_{p}$ and $[1]_{p}$ have a unique lift to $\mathbb{Z} / p^{2} \mathbb{Z}$ which is a solution, these in turn have a unique lift to $\mathbb{Z} / p^{3} \mathbb{Z}$ etc. So there are exactly two solutions in $\mathbb{Z} / p^{k} \mathbb{Z}$, which we can directly verify to be [0] and [1].
c) By the Chinese Remainder Theorem there are 2^{k} solutions to the equation in $\mathbb{Z} / m \mathbb{Z}$, which we obtain as follows. If $\left[a_{1}\right]_{p_{1}^{i_{1}}}, \ldots,\left[a_{k}\right]_{p_{k}^{i_{k}}}$ are any solutions in $\mathbb{Z} / p_{1}^{i_{1}} \mathbb{Z}, \ldots, \mathbb{Z} / p_{k}^{i_{k}} \mathbb{Z}$, then

$$
\sum_{j=1}^{k} a_{j} M_{j} y_{j} \bmod m
$$

is a solution in $\mathbb{Z} / m \mathbb{Z}$, where $M_{j}=m / p_{j}^{i_{j}}$ and y_{j} is any integer satisfying $\left[y_{j}\right]_{p_{j}}=$ $\left[M_{j}\right]_{p_{j}}^{-1}$, and every solution is of this form. By Euler's Theorem we can choose $y_{j}=$ $M_{j}^{\phi\left(p_{j}^{i j}\right)-1}$, since

$$
\left[M_{j}^{\phi\left(p_{j}^{i_{j}}\right)-1}\right]_{p_{j}^{i_{j}}} \cdot\left[M_{j}\right]_{p_{j}^{i_{j}}}=\left[M_{j}^{\phi\left(p_{j}^{i_{j}}\right.}\right]_{p_{j}^{i_{j}}}=[1]_{p_{j}^{i_{j}}} .
$$

So

$$
\sum_{j=1}^{k} a_{j} M_{j} y_{j} \bmod m=\sum_{j=1}^{k} a_{j} M_{j}^{\phi\left(p_{j}^{i_{j}}\right)} \bmod m=\sum_{j=1}^{k} a_{j}\left(\frac{m}{p_{j}^{i_{j}}}\right)^{p_{j}^{i_{j}-p_{j}^{i_{j}-1}}} \bmod m
$$

By part b) we can choose each of the a_{j} to be in the set $\{0,1\}$, and every such choice gives a different solution in $\mathbb{Z} / m \mathbb{Z}$.

