
Fall 2021 – Math 328K – 55385

Homework 8 Solutions

Problem 1. What are the last four decimal digits of the number 1115999?

Solution 1. Let x = [1115999]10000. We have

φ(10000) = φ(24)φ(54) = (24 − 23)(54 − 53) = 4000,

so x4000 = [1] for all x ∈ (Z/10000Z)×. Now 11 and 10000 are coprime, so [11] ∈
(Z/10000Z)×, and therefore

[11]x = [11]16000 = ([11]4000)4 = [1]4 = [1].

So x = [11]−1. We could compute this with the extended Euclidean algorithm, but it’s
actually really easy to guess the Bezout coefficients in this case: 10000 − 909 · 11 = 1,
so the Bezout coefficients of 10000 and 11 are 1 and −909. This means that

x = [11]−1 = [−909] = [9091],

so the last four digits of 1115999 are 9091.

Problem 2. Show the following facts about Euler’s φ–function:

a) φ(n) is even for every n ≥ 3,

b) φ(nk) = nk−1φ(n) for all n, k ∈ N,

c) φ(n) ≥
√
n for all n ∈ N \ {2, 6},

d) If m | n, then φ(m) | φ(n).

Solution 2.

a) If n = pk is a prime power, then φ(pk) = pk−1(p− 1). If p is odd, then p− 1 is even,
and if p = 2 and k ≥ 2, then pk−1 is even. So φ(pk) is even unless pk = 2. If n ≥ 3
then the prime power decomposition of n always contains a prime power different
from 2. Since φ is multiplicative, this is enough for φ(n) to be even.

b) We proved in class that φ(n)/n is the product
∏

p(1− p−1), where p goes through all
prime divisors of n. But nk has the same prime divisors as n, so φ(nk)/nk = φ(n)/n.
Multiply by nk to get the statement we want.
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c) The function f(x) =
√
x

x−1 is decreasing if x > 1. Its values on the first few primes
are f(2) =

√
2, f(3) =

√
3
2

and f(5) =
√
5
4
. So f(p) < 1 for all primes p ≥ 3 and

f(2)f(p) ≤ f(2)f(5) =
√
10
4
< 1 for all primes p ≥ 5.

Let n be a positive integer and P the set of its prime divisors. Then

φ(n)

n
=
∏
p∈P

(
1− 1

p

)
=
∏
p∈P

1

f(p)
√
p
=

1∏
p∈P f(p)

· 1√∏
p∈P p

≥ 1∏
p∈P f(p)

· 1√
n
.

So if we can show that
∏

p∈P f(p) ≤ 1, then φ(n) ≥
√
n would follow. If 2 6∈ P then

f(p) < 1 for all p ∈ P , so
∏

p∈P f(p) ≤ 1. If 2 ∈ P but P also contains a prime
q ≥ 5, then

∏
p∈P f(p) ≤ f(2)f(q) < 1.

The remaining cases are P = {2} and P = {2, 3}. That is, n = 2i3j for integers
i ≥ 1 and j ≥ 0. If j = 0 then φ(n) = 2i−1 = n

2
. If j ≥ 1 then φ(n) = φ(2i)φ(3j) =

2i−1 · 2 · 3j−1 = n
3
.

If n ≥ 9 then n
2
≥ n

3
≥
√
n, so we are done, both in the case j = 0 and j ≥ 1. The

only remaining possibilities for n are 1, 2, 3, 4, 6, 8. We directly compute

n 1 2 3 4 6 8
φ(n)2 1 1 4 4 4 16

So φ(n) ≥
√
n in all cases except n = 2 or n = 6.

d) First observe that, if p is a prime and 0 ≤ j ≤ i, then φ(pj) | φ(pi). If j = 0 this is
trivially true, and otherwise φ(pj) = pj−1(p−1) is also a divisor of φ(pi) = pi−1(p−1).

Now write n = pi11 · · · p
ik
k for distinct primes p1, . . . , pk and i1, . . . , ik ≥ 1. If m | n,

then m = pj11 · · · p
jk
k with j` ≤ i` for all `. So φ(pj`` ) | φ(p

i`
` ) for all ` and therefore

φ(m) | φ(n).

Problem 3. Let n = p1 · · · pk be a product of distinct (odd) primes and let x ∈ Z/nZ.
Show that

xφ(n)+1 = x.

Solution 3. Let y = xφ(n)+1 − x. We want to show that y = [0]. By the Chinese
Remainder Theorem, it is enough to show that ymodpi = 0modpi for all i ∈ {1, . . . , k}.
Since φ is multiplicative, we have φ(pi) | φ(n), say φ(n) = φ(pi)di for some (positive)
integer di. So

y mod pi = ((x mod pi)
φ(pi))di(x mod pi)− (x mod pi).

This is [0] if xmod pi = [0], but also if xmod pi 6= [0] by Euler’s Theorem.
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Problem 4. Let m ∈ N. The goal of this problem is to find all integers which are
congruent modulo m to their own square. In other words, we want to find all solutions
of the equation x2 − x = 0 in Z/mZ.

a) Show that, if m is prime, then the only solutions are [0] and [1].

b) Show that, if m is a prime power, then the only solutions are still [0] and [1].

c) For general m, let m = pi11 · · · p
ik
k be the prime–power decomposition of m with

p1 < · · · < pk prime and i1, . . . , ik ∈ N. Show there are 2k different solutions of the
equation x2 − x = 0 in Z/mZ, and that these are given by

k∑
j=1

δj

(
m

p
ij
j

)p
ij
j −p

ij−1

j

modm

for every tuple (δ1, . . . , δk) ∈ {0, 1}k.

Hint: For the last part, use Euler’s theorem and the Chinese remainder theorem.

Solution 4.

a) Clearly [0] and [1] are solutions of the equation x2− x = 0. Conversely, let x = [a] ∈
Z/mZ with x2 − x = 0. Then m | a(a− 1). Since m is prime, m | a or m | a− 1. So
[a] = [0] or [a] = [1].

b) Let m = pk, p prime, k ≥ 2. We can use Hensel’s Lemma. The derivative of the
polynomial f(x) = x2 − x is f ′(x) = 2x− 1. So

f ′(0) mod p = −1 mod p 6= 0 mod p,

f ′(1) mod p = 1 mod p 6= 0 mod p.

So by Hensel’s Lemma both [0]p and [1]p have a unique lift to Z/p2Z which is a
solution, these in turn have a unique lift to Z/p3Z etc. So there are exactly two
solutions in Z/pkZ, which we can directly verify to be [0] and [1].

c) By the Chinese Remainder Theorem there are 2k solutions to the equation in Z/mZ,
which we obtain as follows. If [a1]pi11 , . . . , [ak]pikk are any solutions in Z/pi11 Z, . . . ,Z/p

ik
k Z,

then
k∑
j=1

ajMjyj mod m
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is a solution in Z/mZ, where Mj = m/p
ij
j and yj is any integer satisfying [yj]pijj

=

[Mj]
−1
p
ij
j

, and every solution is of this form. By Euler’s Theorem we can choose yj =

M
φ(p

ij
j )−1

j , since

[M
φ(p

ij
j )−1

j ]
p
ij
j

· [Mj]pijj
= [M

φ(p
ij
j )

j ]
p
ij
j

= [1]
p
ij
j

.

So

k∑
j=1

ajMjyj mod m =
k∑
j=1

ajM
φ(p

ij
j )

j mod m =
k∑
j=1

aj

(
m

p
ij
j

)p
ij
j −p

ij−1

j

mod m.

By part b) we can choose each of the aj to be in the set {0, 1}, and every such choice
gives a different solution in Z/mZ.
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