Homework 9 Solutions

due Thursday, November 4, 14:00

Problem 1. Which positive integers m have exactly $3 / 4 / 5$ positive divisors?
Solution 1. Let $m=p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ with p_{1}, \ldots, p_{k} distinct primes and $i_{1}, \ldots, i_{k} \geq 1$. Then $\tau(m)=\left(i_{1}+1\right) \cdots\left(i_{k}+1\right)$.

Since 3 and 5 are prime, $\tau(m)=3$ or $\tau(m)=5$ implies that this product can only have one factor, so m is a prime power. Since $\tau\left(p^{k}\right)=k+1$, The integers with exactly 3 positive divisors are squares of primes, and the integers with exactly 5 positive divisors are fourth powers of primes. The first 10 examples of each are:

$$
4,9,25,49,121,169,289,361,529,841
$$

$$
16,81,625,2401,14641,28561,83521,130321,279841,707281
$$

If $\tau(m)=4$ there are two possibilities: either m is a prime power as before, then m has to be the cube of a prime, or m has two different prime factors, both with exponent 1 . The positive integers with exactly 4 positive divisors are therefore cubes of primes and products of two different primes. The first 10 examples are:

$$
6,8,10,14,15,21,22,26,27,33
$$

Problem 2. Let

$$
\mathcal{F}=\left\{\text { functions } f: \mathbb{Z}_{+} \rightarrow \mathbb{R}\right\}
$$

be the set of all real valued arithmetic functions. We want to define two binary operations on \mathcal{F}, an addition + and a multiplication \star. The operation + is the pointwise addition of functions, defined by

$$
(f+g)(n)=f(n)+g(n)
$$

for any $f, g \in \mathcal{F}$ and $n \in \mathbb{Z}_{+}$, and $f \star g$ is the Dirichlet product

$$
(f \star g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Prove the following statements, for $f, g \in \mathcal{F}$.
a) \mathcal{F} with the addition + and multiplication \star is a commutative ring.

Hint: as multiplicative identity, take the arithmetic function ι defined by $\iota(1)=1$ and $\iota(n)=0$ for all $n>1$.
b) $f \in \mathcal{F}^{\times}$if and only if $f(1) \neq 0$.
c) If f and g are multiplicative, then $f \star g$ is multiplicative.
d) If f is multiplicative and invertible, then f^{-1} is multiplicative.
e) Let $\nu \in \mathcal{F}$ be the constant function $\nu(n)=1$. Then the inverse of ν is the Möbius function μ (that is, the multiplicative function defined by $\mu(p)=-1$ and $\mu\left(p^{k}\right)=0$ for every prime number p and $k \geq 2$).
f) Let f be an arithmetic function and F its summatory function. Then $F=f \star \nu$ and $f=F \star \mu$. This is the Möbius inversion formula. If F is multiplicative, then f is multiplicative.

Solution 2.

a) There are many ring axioms, but most are easy to check. The interesting ones are the commutative and associative properties and the neutral element for multiplication: $f \star g=g \star f, f \star(g \star h)=(f \star g) \star h$, and $f \star \iota=f$ for all $f, g, h \in \mathcal{F}$.

The commutative property just follows from the fact that

$$
\{d \mid d \geq 1 \text { divides } n\}=\left\{\left.\frac{n}{d} \right\rvert\, d \geq 1 \text { divides } n\right\} .
$$

Because of this

$$
(f \star g)(n)=\sum_{d \mid n} f(d) g(n / d)=\sum_{d \mid n} f(n / d) g(d)=(g \star f)(n)
$$

for all $f, g \in \mathcal{F}$ and $n \in \mathbb{Z}_{+}$.
For the associative property we need to check the equality of

$$
((f \star g) \star h)(n)=\sum_{d \mid n} \sum_{d^{\prime} \mid d} f\left(d^{\prime}\right) g\left(\frac{d}{d^{\prime}}\right) h\left(\frac{n}{d}\right)
$$

and

$$
(f \star(g \star h))(n)=\sum_{d \mid n} \sum_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} f(d) g\left(d^{\prime}\right) h\left(\frac{n}{d d^{\prime}}\right) .
$$

In both cases, the summation can be rewritten as

$$
\sum_{a b c=n} f(a) g(b) h(c)
$$

where we sum over all triples of positive integers (a, b, c) with $a b c=n$.
Finally

$$
(f \star \iota)(n)=\sum_{d \mid n} f(d) \iota\left(\frac{n}{d}\right)=f(n)
$$

where the last equality comes from the observation that all terms in the sum vanish except when $n / d=1$, that is $d=n$.
b) First assume $f \in \mathcal{F}^{\times}$. Then there is a function f^{-1} such that $f \star f^{-1}=\iota$. Evaluating at 1 , we get

$$
1=\iota(1)=\sum_{d \mid 1} f(d) f^{-1}(1 / d)=f(1) f^{-1}(1) .
$$

So $f(1) \neq 0$ and $f^{-1}(1)=1 / f(1)$.
Conversely, assume that $f(1) \neq 0$. We want to construct a function g such that $g(1)=1 / f(1)$ and

$$
\sum_{d \mid n} f(d) g(n / d)=0
$$

for all $n \geq 2$. We can rearrange (\triangle) to a recursive definition of g : First set $g(1)=$ $1 / f(1)$. For $n \geq 2$, assume $g(k)$ is already defined for all $k<n$ and set

$$
g(n)=-\frac{1}{f(1)} \sum_{d \mid n, d \neq 1} f(d) g(n / d)
$$

If g is defined this way, it clearly satisfies (\triangle), so $f \star g=\iota$.
c) Let f and g be multiplicative and m and n be coprime. Then

$$
\begin{aligned}
(f \star g)(m n)=\sum_{d \mid m n} f(d) g\left(\frac{m n}{d}\right) & =\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} f\left(d_{1} d_{2}\right) g\left(\frac{m n}{d_{1} d_{2}}\right)=\sum_{d_{1} \mid m} f\left(d_{1}\right) g\left(\frac{m}{d_{1}}\right) \sum_{d_{2} \mid n} f\left(d_{2}\right) g\left(\frac{n}{d_{2}}\right) \\
& =(f \star g)(m) \cdot(f \star g)(n) .
\end{aligned}
$$

We can split the sum this way by the argument we discussed in class (Lemma 7.5).
d) We can do this by induction, with the induction hypothesis for $N \in \mathbb{N}$: " $f^{-1}(m n)=$ $f^{-1}(m) f^{-1}(n)$ for all pairs of coprime positive integers m, n with $m n \leq N$."

In the case $N=1$ this is easy to check: the only pair m, n with $m n \leq 1$ is $m=$ $n=1$. Since f is multiplicative and not constant 0 , we have $f(1)=1$, and also $f^{-1}(1)=1 / f(1)=1$. This implies $f^{-1}(1 \cdot 1)=f^{-1}(1) f^{-1}(1)$.

Now assume that the induction hypothesis has been proved for $N-1$, and let $m, n \in$ \mathbb{Z}_{+}be coprime with $2 \leq m n \leq N$. Then

$$
0=\iota(m n)=\sum_{d \mid m n} f(d) f^{-1}\left(\frac{m n}{d}\right)=\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} f\left(d_{1} d_{2}\right) f^{-1}\left(\frac{m}{d_{1}} \frac{n}{d_{2}}\right) .
$$

and also

$$
0=\iota(m) \iota(n)=\sum_{d_{1} \mid m} f\left(d_{1}\right) f^{-1}\left(\frac{m}{d_{1}}\right) \sum_{d_{2} \mid n} f\left(d_{2}\right) f^{-1}\left(\frac{n}{d_{2}}\right)=\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} f\left(d_{1} d_{2}\right) f^{-1}\left(\frac{m}{d_{1}}\right) f^{-1}\left(\frac{n}{d_{2}}\right)
$$

We subtract these two equations. By the induction hypothesis we have the equality $f^{-1}\left(\frac{m}{d_{1}} \frac{n}{d_{2}}\right)=f^{-1}\left(\frac{m}{d_{1}}\right) f^{-1}\left(\frac{n}{d_{2}}\right)$ in all summands except when $d_{1}=d_{2}=1$, so all of these terms vanish. What remains is

$$
f^{-1}(m n)-f^{-1}(m) f^{-1}(n)=0
$$

which completes the inductive step and the proof that f^{-1} is multiplicative.
e) Let p be a prime and $k \geq 1$. Then

$$
(\mu \star \nu)\left(p^{k}\right)=\sum_{d \mid p^{k}} \mu(d)=\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\cdots+\mu\left(p^{k}\right)=1-1=0=\iota\left(p^{k}\right)
$$

So $\mu \star \nu$ and ι agree on prime powers. Also, $\mu \star \nu$ is multiplicative by c) and ι is multiplicative by definition. If multiplicative functions agree on all prime powers, they are equal. So $\mu \star \nu=\iota$, or equivalently $\nu^{-1}=\mu$.
f) It is clear from the definitions of the Dirichlet product and the summatory function that $f \star \nu=F$. So

$$
F \star \mu=(f \star \nu) \star \mu=f \star(\nu \star \mu)=f \star \iota=f
$$

Using c) and the multiplicativity of μ this also shows that if F is multiplicative, then f is multiplicative.
Also note that $\mu \star \nu=\iota, \iota \star \nu=\nu$, and $\nu \star \nu=\tau$, so we have the "sequence of summatory functions"

$$
\mu \rightarrow \iota \rightarrow \nu \rightarrow \tau
$$

