
Fall 2021 – Math 328K – 55385

Homework 9 Solutions

due Thursday, November 4, 14:00

Problem 1. Which positive integers m have exactly 3/4/5 positive divisors?

Solution 1. Let m = pi11 · · · p
ik
k with p1, . . . , pk distinct primes and i1, . . . , ik ≥ 1. Then

τ(m) = (i1 + 1) · · · (ik + 1).

Since 3 and 5 are prime, τ(m) = 3 or τ(m) = 5 implies that this product can only have
one factor, so m is a prime power. Since τ(pk) = k + 1, The integers with exactly 3
positive divisors are squares of primes, and the integers with exactly 5 positive divisors
are fourth powers of primes. The first 10 examples of each are:

4, 9, 25, 49, 121, 169, 289, 361, 529, 841

16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281

If τ(m) = 4 there are two possibilities: either m is a prime power as before, then m has
to be the cube of a prime, or m has two different prime factors, both with exponent 1.
The positive integers with exactly 4 positive divisors are therefore cubes of primes and
products of two different primes. The first 10 examples are:

6, 8, 10, 14, 15, 21, 22, 26, 27, 33

Problem 2. Let
F = {functions f : Z+→ R}

be the set of all real valued arithmetic functions. We want to define two binary oper-
ations on F , an addition + and a multiplication ?. The operation + is the pointwise
addition of functions, defined by

(f + g)(n) = f(n) + g(n),

for any f, g ∈ F and n ∈ Z+, and f ? g is the Dirichlet product

(f ? g)(n) =
∑
d|n

f(d)g(n/d).

Prove the following statements, for f, g ∈ F .
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a) F with the addition + and multiplication ? is a commutative ring.

Hint: as multiplicative identity, take the arithmetic function ι defined by ι(1) = 1
and ι(n) = 0 for all n > 1.

b) f ∈ F× if and only if f(1) 6= 0.

c) If f and g are multiplicative, then f ? g is multiplicative.

d) If f is multiplicative and invertible, then f−1 is multiplicative.

e) Let ν ∈ F be the constant function ν(n) = 1. Then the inverse of ν is the Möbius
function µ (that is, the multiplicative function defined by µ(p) = −1 and µ(pk) = 0
for every prime number p and k ≥ 2).

f) Let f be an arithmetic function and F its summatory function. Then F = f ? ν and
f = F ? µ. This is the Möbius inversion formula. If F is multiplicative, then f is
multiplicative.

Solution 2.

a) There are many ring axioms, but most are easy to check. The interesting ones are the
commutative and associative properties and the neutral element for multiplication:
f ? g = g ? f , f ? (g ? h) = (f ? g) ? h, and f ? ι = f for all f, g, h ∈ F .

The commutative property just follows from the fact that

{d | d ≥ 1 divides n} = {n
d
| d ≥ 1 divides n}.

Because of this

(f ? g)(n) =
∑
d|n

f(d)g(n/d) =
∑
d|n

f(n/d)g(d) = (g ? f)(n)

for all f, g ∈ F and n ∈ Z+.

For the associative property we need to check the equality of

((f ? g) ? h)(n) =
∑
d|n

∑
d′|d

f(d′)g( d
d′
)h(n

d
)

and
(f ? (g ? h))(n) =

∑
d|n

∑
d′|n

d

f(d)g(d′)h( n
dd′

).

In both cases, the summation can be rewritten as∑
abc=n

f(a)g(b)h(c)
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where we sum over all triples of positive integers (a, b, c) with abc = n.

Finally
(f ? ι)(n) =

∑
d|n

f(d)ι(n
d
) = f(n)

where the last equality comes from the observation that all terms in the sum vanish
except when n/d = 1, that is d = n.

b) First assume f ∈ F×. Then there is a function f−1 such that f ?f−1 = ι. Evaluating
at 1, we get

1 = ι(1) =
∑
d|1

f(d)f−1(1/d) = f(1)f−1(1).

So f(1) 6= 0 and f−1(1) = 1/f(1).

Conversely, assume that f(1) 6= 0. We want to construct a function g such that
g(1) = 1/f(1) and ∑

d|n

f(d)g(n/d) = 0 (4)

for all n ≥ 2. We can rearrange (4) to a recursive definition of g: First set g(1) =
1/f(1). For n ≥ 2, assume g(k) is already defined for all k < n and set

g(n) = − 1

f(1)

∑
d|n,d6=1

f(d) g(n/d).

If g is defined this way, it clearly satisfies (4), so f ? g = ι.

c) Let f and g be multiplicative and m and n be coprime. Then

(f?g)(mn) =
∑
d|mn

f(d)g(mn
d
) =

∑
d1|m

∑
d2|n

f(d1d2)g(
mn
d1d2

) =
∑
d1|m

f(d1)g(
m
d1
)
∑
d2|n

f(d2)g(
n
d2
)

= (f ? g)(m) · (f ? g)(n).

We can split the sum this way by the argument we discussed in class (Lemma 7.5).

d) We can do this by induction, with the induction hypothesis for N ∈ N: “f−1(mn) =
f−1(m)f−1(n) for all pairs of coprime positive integers m,n with mn ≤ N .”

In the case N = 1 this is easy to check: the only pair m,n with mn ≤ 1 is m =
n = 1. Since f is multiplicative and not constant 0, we have f(1) = 1, and also
f−1(1) = 1/f(1) = 1. This implies f−1(1 · 1) = f−1(1)f−1(1).
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Now assume that the induction hypothesis has been proved for N−1, and let m,n ∈
Z+ be coprime with 2 ≤ mn ≤ N . Then

0 = ι(mn) =
∑
d|mn

f(d)f−1(mn
d
) =

∑
d1|m

∑
d2|n

f(d1d2)f
−1(m

d1
n
d2
).

and also

0 = ι(m)ι(n) =
∑
d1|m

f(d1)f
−1(m

d1
)
∑
d2|n

f(d2)f
−1( n

d2
) =

∑
d1|m

∑
d2|n

f(d1d2)f
−1(m

d1
)f−1( n

d2
)

We subtract these two equations. By the induction hypothesis we have the equality
f−1(m

d1
n
d2
) = f−1(m

d1
)f−1( n

d2
) in all summands except when d1 = d2 = 1, so all of

these terms vanish. What remains is

f−1(mn)− f−1(m)f−1(n) = 0,

which completes the inductive step and the proof that f−1 is multiplicative.

e) Let p be a prime and k ≥ 1. Then

(µ ? ν)(pk) =
∑
d|pk

µ(d) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pk) = 1− 1 = 0 = ι(pk).

So µ ? ν and ι agree on prime powers. Also, µ ? ν is multiplicative by c) and ι is
multiplicative by definition. If multiplicative functions agree on all prime powers,
they are equal. So µ ? ν = ι, or equivalently ν−1 = µ.

f) It is clear from the definitions of the Dirichlet product and the summatory function
that f ? ν = F . So

F ? µ = (f ? ν) ? µ = f ? (ν ? µ) = f ? ι = f.

Using c) and the multiplicativity of µ this also shows that if F is multiplicative, then
f is multiplicative.

Also note that µ ? ν = ι, ι ? ν = ν, and ν ? ν = τ , so we have the “sequence of
summatory functions”

µ→ ι→ ν → τ.
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