Fall 2021 — Math 328K — 55385

Homework 9 Solutions
due Thursday, November 4, 14:00

Problem 1. Which positive integers m have exactly 3/4/5 positive divisors?

Solution 1. Let m = p'' - -pfj with py, ..., px distinct primes and ¢, ...,4 > 1. Then
T(m) = (i1 + 1) (ix, + 1).

Since 3 and 5 are prime, 7(m) = 3 or 7(m) = 5 implies that this product can only have
one factor, so m is a prime power. Since 7(p¥) = k + 1, The integers with exactly 3
positive divisors are squares of primes, and the integers with exactly 5 positive divisors
are fourth powers of primes. The first 10 examples of each are:

4,9,25,49,121, 169, 289, 361, 529, 841

16, 81,625, 2401, 14641, 28561, 83521, 130321, 279841, 707281

If 7(m) = 4 there are two possibilities: either m is a prime power as before, then m has
to be the cube of a prime, or m has two different prime factors, both with exponent 1.
The positive integers with exactly 4 positive divisors are therefore cubes of primes and
products of two different primes. The first 10 examples are:

6.8,10, 14,15, 21, 22,26, 27, 33
Problem 2. Let
F = {functions f: Z, — R}

be the set of all real valued arithmetic functions. We want to define two binary oper-
ations on F, an addition + and a multiplication x. The operation + is the pointwise
addition of functions, defined by

(f +9)(n) = f(n) + g(n),
for any f,g € F and n € Z,, and [ % g is the Dirichlet product

(f*9)(n) = f(d)g(n/d).

din

Prove the following statements, for f,g € F.



a) JF with the addition + and multiplication % is a commutative ring.

Hint: as multiplicative identity, take the arithmetic function ¢ defined by ¢(1) = 1
and v(n) =0 for alln > 1.

b) f € F* if and only if f(1) # 0.

c) If f and g are multiplicative, then f x ¢ is multiplicative.

d) If f is multiplicative and invertible, then f~! is multiplicative.
)

e) Let v € F be the constant function v(n) = 1. Then the inverse of v is the Mdbius
function p (that is, the multiplicative function defined by u(p) = —1 and u(p*) = 0
for every prime number p and k > 2).

f) Let f be an arithmetic function and F' its summatory function. Then F' = f x v and
f = F x p. This is the Mdbius inversion formula. If F' is multiplicative, then f is
multiplicative.

Solution 2.

a) There are many ring axioms, but most are easy to check. The interesting ones are the
commutative and associative properties and the neutral element for multiplication:

fxg=g*f, fx(gxh)=(f*g)xh,and fxv= f forall f,g,h € F.
The commutative property just follows from the fact that
{d | d>1divides n} = {5 | d > 1 divides n}.

Because of this

(f *9)(n }jf g(n/d) =3 _ f(n/d)g(d) = (g% /)(n)

djn

forall f,g € Fandn € Z,.
For the associative property we need to check the equality of

(fxg)xh)(n) =) f(d)g(4)h(%)

dn d'|d

(fx(gxh)(n) =D f(d)g(d)h(Z).

dn d'|%

and

In both cases, the summation can be rewritten as

> fla)gb)h(e)

abc=n



where we sum over all triples of positive integers (a, b, ¢) with abc = n.

(f*0)(n) =D f(d)u(®) = f(n)

dln

Finally

where the last equality comes from the observation that all terms in the sum vanish
except when n/d = 1, that is d = n.

First assume f € F*. Then there is a function f~! such that fx f~! = .. Evaluating

at 1, we get
=Y fd)f M /d) = F) ().

dj1
So £(1) £ 0 and f1(1) = 1/(1).
Conversely, assume that f(1) # 0. We want to construct a function g such that
g9(1) =1/f(1) and

> fld)g(n/d) =0 (&)

din

for all n > 2. We can rearrange (A) to a recursive definition of g: First set g(1) =
1/f(1). For n > 2, assume g¢(k) is already defined for all £ < n and set

g(n Zf g(n/d).

d\n d#1
If ¢ is defined this way, it clearly satisfies (A), so fxg = ¢.
Let f and g be multiplicative and m and n be coprime. Then

(fxg)(mn) Z f(d)g(™F) = ZZf (did2)g(7%) Zf (di)g I)Zf(dz)g(%)

dlmn dilm dz|n dilm da|n
= (fxg)(m) - (f xg)(n).
We can split the sum this way by the argument we discussed in class (Lemma 7.5).

We can do this by induction, with the induction hypothesis for N € N: “ f~1(mn) =
f7Y(m)f~Y(n) for all pairs of coprime positive integers m,n with mn < N.”

In the case N = 1 this is easy to check: the only pair m,n with mn < 1is m =
n = 1. Since f is multiplicative and not constant 0, we have f(1) = 1, and also

1) =1/f(1) = 1. This implies f~1(1-1) = f~1(1)f7(1).



Now assume that the induction hypothesis has been proved for N —1, and let m,n €
Z be coprime with 2 < mn < N. Then

=X S@f Y =YY fdid) [ R,

dlmn dilm da|n

and also

0= c(m)e(n) =Y f(d)f(5)Y  fld)f () =D > fldada) f () FH(2)

di|m da|n dilm dz|n

We subtract these two equations. By the induction hypothesis we have the equality

) = () 1(g) in all summands except when d; = dy = 1, so all of

these terms Vanlsh What remains is

fHmn) — f7H(m)f~(n) = 0,
which completes the inductive step and the proof that f~! is multiplicative.
Let p be a prime and k£ > 1. Then
(xv) (@) =Y n(d) = p(1) + p(p) + p(p?) + -+ (") =1-1=0=up").
d|p*

So p v and ¢ agree on prime powers. Also, p * v is multiplicative by c) and ¢ is
multiplicative by definition. If multiplicative functions agree on all prime powers,
they are equal. So v = ¢, or equivalently v~ = p.

It is clear from the definitions of the Dirichlet product and the summatory function
that fxv = F. So

Fop=(frv)xp=[frwrp) =frxo=f

Using ¢) and the multiplicativity of p this also shows that if F' is multiplicative, then
f is multiplicative.

Also note that pxv = ¢, txv = v, and v xv = 7, so we have the “sequence of
summatory functions”
=1L — V=T



