Fall 2021 - Math 328K - 55385

Homework 10 Solutions

Problem 1. Let $m, k \in \mathbb{Z}_{+}$and $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. Show that

$$
\operatorname{ord}\left(a^{k}\right)=\frac{\operatorname{ord}(a)}{(\operatorname{ord}(a), k)} .
$$

Solution 1. To simplify notation, write $s=\operatorname{ord}(a)$ and $t=\operatorname{ord}\left(a^{k}\right)$. Then $\left(a^{k}\right)^{s /(s, k)}=$ $\left(a^{s}\right)^{k /(s, k)}=[1]$, so $t \leq \frac{s}{(s, k)}$.

Assume that $t<\frac{s}{(s, k)}$. Then $k t<\frac{k s}{(s, k)}=\operatorname{lcm}(s, k)$, so $k t$ is not a common multiple of s and k. It is clearly a multiple of k though, so $s \nmid k t$. This means that $k t=q s+r$ for some integers q and r with $0<r<s$. But $a^{r}=a^{k t-q s}=\left(a^{k}\right)^{t}\left(a^{s}\right)^{-q}=[1]$, a contradiction to s being the least exponent n with $a^{n}=[1]$. So $t=\frac{s}{(s, k)}$.

Problem 2. Let $m \in \mathbb{Z}_{+}$be a positive integer such that $\mathbb{Z} / m \mathbb{Z}$ has a primitive root. Show the following generalization of Wilson's Theorem:

$$
\prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=-1
$$

Solution 2. Assume $m \neq 2$ and let $r \in(\mathbb{Z} / m \mathbb{Z})^{\times}$be a primitive root. First note that $[-1]$ is the unique $x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$with $\operatorname{ord}(x)=2$. This is since every such x can be written as r^{k} for some $k \in\{0, \ldots, \phi(m)-1\}$ and by Problem 1

$$
\operatorname{ord}(x)=\operatorname{ord}\left(r^{k}\right)=\frac{\operatorname{ord}(r)}{(\operatorname{ord}(r), k)}=\frac{\phi(m)}{(\phi(m), k)},
$$

so $\operatorname{ord}(x)=2$ if and only if $\frac{\phi(m)}{2}=(\phi(m), k)$. Clearly this is only the case for a single k, namely $k=\phi(m) / 2$. So $[-1]=r^{\phi(m) / 2}$, and this is the unique element of $(\mathbb{Z} / m \mathbb{Z})^{\times}$ with order 2.

Now

$$
\prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=\prod_{k \in \mathbb{Z} / \phi(m) \mathbb{Z}} r^{k}=r^{\sum_{k \in \mathbb{Z} / \phi(m) \mathbb{Z}^{k}}} .
$$

In the sum over all elements $k \in \mathbb{Z} / \phi(m) \mathbb{Z}$, every k cancels out with $-k$ unless $k=-k$. Since $\phi(m)$ is even, there are exactly two such k, namely $[0]_{\phi(m)}$ and $[\phi(m) / 2]_{\phi(m)}$. So

$$
\sum_{k \in \mathbb{Z} / \phi(m) \mathbb{Z}} k=\left[\frac{\phi(m)}{2}\right]_{\phi(m)}
$$

and therefore $\prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} x=r^{\phi(m) / 2}=[-1]_{m}$.
If $m=2$, then $\prod_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{\times}} x=[1]_{2}=[-1]_{2}$.

Problem 3.

a) Let p be an odd prime. Show that the equation $x^{4}=-1$ has a solution in $\mathbb{Z} / p \mathbb{Z}$ if and only if

$$
p \bmod 8=1 \bmod 8,
$$

and has exactly 4 solutions in that case.
b) Let $m \in \mathbb{Z}_{+}$and write $m=2^{i_{0}} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ for distinct odd primes $p_{1}, \ldots, p_{k}, i_{0} \geq 0$, and $i_{1}, \ldots, i_{k} \geq 1$. Show the equation $x^{4}=-1$ has a solution in $\mathbb{Z} / m \mathbb{Z}$ if and only if

$$
i_{0} \in\{0,1\} \quad \text { and } \quad p_{j} \bmod 8=1 \bmod 8 \quad \text { for all } j \in\{1, \ldots, k\}
$$

and has exactly 4^{k} solutions in that case.

Solution 3.

a) First note that $[0]$ is not a solution, so we can restrict our attention to $(\mathbb{Z} / p \mathbb{Z})^{\times}$.

Let $r \in(\mathbb{Z} / p \mathbb{Z})^{\times}$be a primitive root. We can write every $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$as r^{k} for a unique $k \in \mathbb{Z} /(p-1) \mathbb{Z}$. For example, $r^{k}=[-1]$ iff $k=\left[\frac{p-1}{2}\right]$. So $\left(r^{k}\right)^{4}=[-1]$ if and only if $4 k=\left[\frac{p-1}{2}\right]$. Recall that this linear Diophantine equation has a solution in $\mathbb{Z} /(p-1) \mathbb{Z}$ if and only if $(4, p-1) \left\lvert\, \frac{p-1}{2}\right.$, and has $(4, p-1)$ solutions in this case.

Write $p-1=2^{i} m$ with $i, m \geq 0$ and m odd. Then in fact $i \geq 1$ as otherwise $p-1$ would be odd, but we assumed $p \neq 2$. If $i=1$, then $(4, p-1)=2$ and $\frac{p-1}{2}=m$ is odd, so $(4, p-1) \nmid \frac{p-1}{2}$. If $i=2$, then $(4, p-1)=4$ and $\frac{p-1}{2}=2 m$, so again $(4, p-1) \nmid \frac{p-1}{2}$. If $i \geq 3$, then $(4, p-1)=4$ and $\frac{p-1}{2}=2^{i-1} m$, so $(4, p-1) \left\lvert\, \frac{p-1}{2}\right.$. So the equation $x^{4}=[-1]$ has a solution if and only if $8 \mid p-1$, and it has 4 solutions in that case.
b) Let $f(x)=x^{4}+1$. Then $f^{\prime}(x)=4 x^{3}$. In the case that $m=p^{k}$ is a power of an odd prime p, by part a) we have no solutions unless $p \bmod 8=1 \bmod 8$, and in that case there are 4 solutions in $\mathbb{Z} / p \mathbb{Z}$. Let x be one of them. We noted before that $x \neq[0]_{p}$, so $f^{\prime}(x)=4 x^{3} \neq[0]_{p}\left([4]_{p} \neq[0]_{p}\right)$. So Hensel's Lemma tells us that a unique lift of every solution in $\mathbb{Z} / p \mathbb{Z}$ to $\mathbb{Z} / p^{k} \mathbb{Z}$ is a solution, in particular that we have exactly 4 solutions in $\mathbb{Z} / p^{k} \mathbb{Z}$.

Now assume that $m=2^{k}$ is a power of two. Since the equation $x^{4}=-1$ has no solutions in $\mathbb{Z} / 4 \mathbb{Z}$, it also has no solutions in $\mathbb{Z} / 2^{k} \mathbb{Z}$ if $k \geq 2$. It has a unique solution in $\mathbb{Z} / 2 \mathbb{Z}$.

Write S_{m} for the number of solutions in $\mathbb{Z} / m \mathbb{Z}$. We showed that $S_{2}=1, S_{2^{k}}=0$ for all $k \geq 2, S_{p^{k}}=4$ for all odd primes p with $[p]_{8}=[1]_{8}$ and $k \geq 1$, and $S_{p^{k}}=0$ for all other primes p. If $m=2^{i_{0}} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}$ as in the question, then by the Chinese Remainder Theorem

$$
S_{m}= \begin{cases}S_{2^{i_{0}}} S_{p_{1}^{i_{1}}} \cdots S_{p_{k}^{i_{k}}} & \text { if } i_{0} \geq 1, \\ S_{p_{1}^{i_{1}}} \cdots S_{p_{k}^{i_{k}}} & \text { if } i_{0}=0 .\end{cases}
$$

These products evaluate to 0 if any of the factors are 0 , and to 4^{k} otherwise.

Problem 4. The n-th Fermat number is $F_{n}=2^{2^{n}}+1$ (the exponent is 2^{n}).
a) Show that $\operatorname{ord}_{F_{n}} 2 \leq 2^{n+1}$.
A remark on notation: for coprime $a \in \mathbb{Z}$ and $m \in \mathbb{Z}_{+}$, the expressions $\operatorname{ord}_{m} a$, $\operatorname{ord}_{m}[a]_{m}$, and ord $[a]_{m}$ all mean the same thing, the order of $[a]_{m}$ in $(\mathbb{Z} / m \mathbb{Z})^{\times}$.
b) Suppose p is a prime divisor of F_{n}, show that $\operatorname{ord}_{p} 2=2^{n+1}$.

Hint: first show that $\operatorname{ord}_{p} 2 \mid 2^{n+1}$ to deduce that $\operatorname{ord}_{p} 2$ is a power of 2 and must divide 2^{n} if $\operatorname{ord}_{p} 2<2^{n+1}$.
c) Use the previous part to show that $p=2^{n+1} k+1$ for some $k \in \mathbb{Z}_{+}$.

Solution 4.

a) We need to show that $[2]_{F_{n}}^{2 n+1}=[1]_{F_{n}}$, or equivalently $F_{n} \mid 2^{2^{n+1}}-1$. But this follows from $2^{2^{n+1}}-1=\left(2^{2^{n}}+1\right)\left(2^{2^{n}}-1\right)=F_{n}\left(2^{2^{n}}-1\right)$.
b) Recall that $\operatorname{ord}_{m}(x) \mid n$ if and only if $x^{n}=[1]$. So $\operatorname{ord}_{p} 2 \mid 2^{n+1}$ if and only if $[2]_{p}^{2^{n+1}}=[1]_{p}$, or equivalently $p \mid 2^{2^{n+1}}-1$. We already showed that $F_{n} \mid 2^{2^{n+1}}-1$, and $p \mid F_{n}$, so $\operatorname{ord}_{p} 2 \mid 2^{n+1}$.

All divisors of 2^{n+1} are powers of 2 , so $\operatorname{ord}_{p} 2=2^{k}$ for some k. If $\operatorname{ord}_{p} 2 \neq 2^{n+1}$ then $k \leq n$, so $\operatorname{ord}_{p} 2 \mid 2^{n}$. As before, this is equivalent to $p \mid 2^{2^{n}}-1$. But we also have $p \mid 2^{2^{n}}+1$ by definition, so p divides the difference $\left(2^{2^{n}}+1\right)-\left(2^{2^{n}}-1\right)=2$. So $p=2$, which is impossible since F_{n} is odd. This shows that $\operatorname{ord}_{p} 2=2^{n+1}$.
c) We know that $\operatorname{ord}_{p} 2 \mid \phi(p)$, so $2^{n+1} \mid p-1$. In other words, $p=2^{n+1} k+1$ for some $k \in \mathbb{Z}$, and $k \geq 1$ since $p>1$.

