
Fall 2021 – Math 328K – 55385

Homework 10 Solutions

Problem 1. Let m, k ∈ Z+ and a ∈ (Z/mZ)×. Show that

ord(ak) =
ord(a)

(ord(a), k)
.

Solution 1. To simplify notation, write s = ord(a) and t = ord(ak). Then (ak)s/(s,k) =
(as)k/(s,k) = [1], so t ≤ s

(s,k)
.

Assume that t < s
(s,k)

. Then kt < ks
(s,k)

= lcm(s, k), so kt is not a common multiple of
s and k. It is clearly a multiple of k though, so s - kt. This means that kt = qs + r
for some integers q and r with 0 < r < s. But ar = akt−qs = (ak)t(as)−q = [1], a
contradiction to s being the least exponent n with an = [1]. So t = s

(s,k)
.

Problem 2. Let m ∈ Z+ be a positive integer such that Z/mZ has a primitive root.
Show the following generalization of Wilson’s Theorem:∏

x∈(Z/mZ)×
x = −1.

Solution 2. Assume m 6= 2 and let r ∈ (Z/mZ)× be a primitive root. First note that
[−1] is the unique x ∈ (Z/mZ)× with ord(x) = 2. This is since every such x can be
written as rk for some k ∈ {0, . . . , φ(m)− 1} and by Problem 1

ord(x) = ord(rk) =
ord(r)

(ord(r), k)
=

φ(m)

(φ(m), k)
,

so ord(x) = 2 if and only if φ(m)
2

= (φ(m), k). Clearly this is only the case for a single
k, namely k = φ(m)/2. So [−1] = rφ(m)/2, and this is the unique element of (Z/mZ)×
with order 2.

Now ∏
x∈(Z/mZ)×

x =
∏

k∈Z/φ(m)Z

rk = r
∑
k∈Z/φ(m)Z k.

1



In the sum over all elements k ∈ Z/φ(m)Z, every k cancels out with −k unless k = −k.
Since φ(m) is even, there are exactly two such k, namely [0]φ(m) and [φ(m)/2]φ(m). So∑

k∈Z/φ(m)Z

k =

[
φ(m)

2

]
φ(m)

and therefore
∏

x∈(Z/mZ)× x = rφ(m)/2 = [−1]m.

If m = 2, then
∏

x∈(Z/2Z)× x = [1]2 = [−1]2.

Problem 3.

a) Let p be an odd prime. Show that the equation x4 = −1 has a solution in Z/pZ if
and only if

p mod 8 = 1 mod 8,

and has exactly 4 solutions in that case.

b) Let m ∈ Z+ and write m = 2i0pi11 · · · p
ik
k for distinct odd primes p1, . . . , pk, i0 ≥ 0,

and i1, . . . , ik ≥ 1. Show the equation x4 = −1 has a solution in Z/mZ if and only if

i0 ∈ {0, 1} and pj mod 8 = 1 mod 8 for all j ∈ {1, . . . , k},

and has exactly 4k solutions in that case.

Solution 3.

a) First note that [0] is not a solution, so we can restrict our attention to (Z/pZ)×.

Let r ∈ (Z/pZ)× be a primitive root. We can write every x ∈ (Z/pZ)× as rk for a
unique k ∈ Z/(p − 1)Z. For example, rk = [−1] iff k = [p−1

2
]. So (rk)4 = [−1] if

and only if 4k = [p−1
2
]. Recall that this linear Diophantine equation has a solution

in Z/(p− 1)Z if and only if (4, p− 1) | p−1
2
, and has (4, p− 1) solutions in this case.

Write p− 1 = 2im with i,m ≥ 0 and m odd. Then in fact i ≥ 1 as otherwise p− 1
would be odd, but we assumed p 6= 2. If i = 1, then (4, p − 1) = 2 and p−1

2
= m

is odd, so (4, p − 1) - p−1
2
. If i = 2, then (4, p − 1) = 4 and p−1

2
= 2m, so again

(4, p− 1) - p−1
2
. If i ≥ 3, then (4, p− 1) = 4 and p−1

2
= 2i−1m, so (4, p− 1) | p−1

2
. So

the equation x4 = [−1] has a solution if and only if 8 | p− 1, and it has 4 solutions
in that case.
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b) Let f(x) = x4 + 1. Then f ′(x) = 4x3. In the case that m = pk is a power of an odd
prime p, by part a) we have no solutions unless p mod 8 = 1 mod 8, and in that case
there are 4 solutions in Z/pZ. Let x be one of them. We noted before that x 6= [0]p,
so f ′(x) = 4x3 6= [0]p ([4]p 6= [0]p). So Hensel’s Lemma tells us that a unique lift of
every solution in Z/pZ to Z/pkZ is a solution, in particular that we have exactly 4
solutions in Z/pkZ.

Now assume that m = 2k is a power of two. Since the equation x4 = −1 has no
solutions in Z/4Z, it also has no solutions in Z/2kZ if k ≥ 2. It has a unique solution
in Z/2Z.

Write Sm for the number of solutions in Z/mZ. We showed that S2 = 1, S2k = 0
for all k ≥ 2, Spk = 4 for all odd primes p with [p]8 = [1]8 and k ≥ 1, and Spk = 0

for all other primes p. If m = 2i0pi11 · · · p
ik
k as in the question, then by the Chinese

Remainder Theorem

Sm =

{
S2i0Spi11

· · ·S
p
ik
k

if i0 ≥ 1,

S
p
i1
1
· · ·S

p
ik
k

if i0 = 0.

These products evaluate to 0 if any of the factors are 0, and to 4k otherwise.

Problem 4. The n–th Fermat number is Fn = 22
n
+ 1 (the exponent is 2n).

a) Show that ordFn 2 ≤ 2n+1.

A remark on notation: for coprime a ∈ Z and m ∈ Z+, the expressions ordm a,
ordm[a]m, and ord [a]m all mean the same thing, the order of [a]m in (Z/mZ)×.

b) Suppose p is a prime divisor of Fn, show that ordp 2 = 2n+1.

Hint: first show that ordp 2 | 2n+1 to deduce that ordp 2 is a power of 2 and must
divide 2n if ordp 2 < 2n+1.

c) Use the previous part to show that p = 2n+1k + 1 for some k ∈ Z+.

Solution 4.

a) We need to show that [2]2n+1

Fn
= [1]Fn , or equivalently Fn | 22

n+1 − 1. But this follows
from 22

n+1 − 1 = (22
n
+ 1)(22

n − 1) = Fn(2
2n − 1).

b) Recall that ordm(x) | n if and only if xn = [1]. So ordp 2 | 2n+1 if and only if
[2]2

n+1

p = [1]p, or equivalently p | 22n+1 − 1. We already showed that Fn | 22
n+1 − 1,

and p | Fn, so ordp 2 | 2n+1.
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All divisors of 2n+1 are powers of 2, so ordp 2 = 2k for some k. If ordp 2 6= 2n+1 then
k ≤ n, so ordp 2 | 2n. As before, this is equivalent to p | 22n − 1. But we also have
p | 22n + 1 by definition, so p divides the difference (22

n
+ 1) − (22

n − 1) = 2. So
p = 2, which is impossible since Fn is odd. This shows that ordp 2 = 2n+1.

c) We know that ordp 2 | φ(p), so 2n+1 | p− 1. In other words, p = 2n+1k + 1 for some
k ∈ Z, and k ≥ 1 since p > 1.
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