Worksheet # 23: Antiderivatives

1. Find the most general antiderivative for each of the following functions.

(a)
$$x - 3$$

(b) $\frac{1}{4}x^6 - 5x^3 + 9x$
(c) $(x + 1)(9x - 8)$
(d) $\sqrt{x} - \frac{2}{\sqrt{x}}$
(e) $\frac{5}{x}$
(f) $\sqrt{x^5} - 40$
(g) $\frac{x^3 - 8x^2 + 5}{x^2}$
(h) $\frac{5}{x^6}$
(i) $\frac{\sqrt{x}}{x^2} + \frac{3}{4}x^3$
(j) $\frac{2}{5}x^e$
(k) $\frac{1}{x - 3}$
(l) $\sin(\theta) - \sec^2(\theta)$

- 2. Find the values of the parameter A and B so that
 - (a) F(x) = (Ax + B)e^x is an antiderivative of f(x) = xe^x.
 (b) H(x) = e^{2x}(A cos x + B sin x) is an antiderivative of h(x) = e^{2x} sin x.
- 3. A particle moves along a straight line so that its velocity is given by $v(t) = t^2$. What is the net change in the particle's position between t = 1 and t = 3?
- 4. Suppose an object travels in a straight line with constant acceleration a, initial velocity v_0 , and initial displacement x_0 . Find a formula for the position function of the object.
- 5. A car brakes with constant deceleration of 5 m/s^2 produceing skid marks measuring 75 meters long before coming to a stop. How fast was the car traveling when the brakes were first applied?
- 6. True or false?

2

- (a) The antiderivative of function is unique.
- (b) If F is the antiderivative of f then f is differentiable.
- (c) If F is the antiderivative of f then F + c where c is a constant is also an antiderivative.