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Inspired by brain architecture.

DL network for supervised learning
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L hidden layers

Output layer

Hidden layer ~ affine map composed with a nonlinear activation fct.

Cost (loss) function on output layer, minimize over affine parameters.
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Definition of DL network

Input layer with N training inputs for equivalence classes j =1,..., Q.
XJ.{?) eERM | i=1,...,N
Hidden layers ¢ =1, ..., L with activation function ¢ (nonlinear !)

) = o(Wex) + by) € RM
and affine map with (unknown) weight matrices and bias vectors
W, € RMxMe=a - p, € RM
Output layer
Xj(jﬂ) = WL+1XJ-(7P +b €RQ
Reference output vectors labeling j-th equivalence class
yyeR? | j=1,..,Q
Weighted £2 cost function with N := (N, ..., Ng)
enlWib)E = 3w 3 Y-y,

J=1,.,Q Y i=1,...N;
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Def: ReLU (Rectified Linear Unit) activation function o.

Ramp function, acting component-wise
o A=[a] = [(a5):] . (a)s = max{0,a)

Note that o(x) = x for x € R} and o(x) =0 for x € R”.

Goal: Find cost minimizing weights, biases, to train DL network.
Zero loss minimizers W/, b} yield Cy[(W;*, b¥)11] = 0.
Given new input, identifies its equivalence class.

Also often used: Entropy cost.
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Gradient descent

Let # € RX enlist components of all weights W, and biases by:

L+1
K= Z(MzM[71 +My), Mo=M
/=1

Merge all vectors in output layer into

xilf] == x50 € RO L x[) = (T [0). ... xf[0])T € ROV

Gradient descent method: Gradient flow of weights and biases
50(s) = —VoC[x[6(s)]] . 6(0) = b, € R".
Monotone decreasing
2
OsCIx(O(s)]] = —| VaClxlO(s)[ <0,

C[x[8(s)]] > 0 bounded below = C, = lim,_, C[x[0(s)]] exists for any
orbit {6(s)|s € R}, and depends on the initial data 6.
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Challenges of gradient descent method

Problems: Cost always converges to a stationary value, but not
necessarily to global minimum. Typically, there may be many
(approximate) local minima trapping the orbit ("landscape"), and
identifying valid ones yielding sufficiently well-trained DL network relies
on ad hoc methods getting flow unstuck from invalid ones.

In applications, §, € R¥ often chosen at random.

(0)

Paradigm: Training data (x;;");; generic = x : RX — ROV generic.

e Underparametrized case: K < QN, embedding: Zero loss global
minimum not reachable for generic training data distribution.

e Overparametrized case: K > QN, typically used. Can get zero loss
global minimum if lucky.

[C-M Ewald 23] Non-generic = zero loss in underparametrized DL exists.
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Neural collapse

1 Aug 2020

5

arXiv:2008.08186v2 [cs.LG]

Prevalence of Neural Collapse during the terminal
phase of deep learning training

Vardan Papyan*", X.¥. Han", and David L. Donoho'*
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Neural collapse
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Explicit global cost minimization

[C-Munoz Ewald '23] Cost with j-th cluster average in output layer

- 1 N;
(L+1) (L+1)
X =N 2=
J =1

Result with explicit construction: Global minimization splits into

cN[(W,,bL“]—Z Z} G — ilne

Q N;
1
- TR A - L
j=1 i=1
Q 1 N; )
— Z( JZ|A (L+1 |]Ro) +Z|X (1) )’j|RQ
Jj=1 i=1

Each of L > Q hidden layers eliminates variance of one of @ clusters.
Output layer matches @ cluster averages to Q reference outputs y;.
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Truncation maps

Assuming all W, € GL(Q) invertible, define cumulative parameters

w®o = WoWy_q1--- W4
bO = Wy Waby + -+ Waby1 + by
BO = (W®O)~1p® (1)
for £ =1,...,L. Define affine maps and truncation maps
a9x) = wOx4p®
O(x) = (@)oo oa¥(x)
(WO WO+ 50) — 50 (2)

Composition property:
<O = W (T(f) o oM (x©)) 4 5(5))

The £-th truncation maps is the pullback of the activation map in ¢-th
layer under a(®), and acts on the training data in the input layer.
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Explicit global zero loss minimizers in underparametrized DL

Theorem [C-Munoz Ewald] 3 explicit zero loss minimizers:

- Recursively reduce j-th cluster of training data to point Xg [u;] where
pj € R parametrizes distance from cluster center to barycenter X.

- Obtain Q distinct points {m[uj]}jozl in output layer.

- Minimize cost explicitly by matching them to y1,..., yo.

TW,ACx> TI/V(,')AG) )

&) R

R ./

GX+b>

T (x
Wz?ﬁ(ej )
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Cost is bounded by deviations in barycentric coordinates

Theorem (C-Mufioz Ewald 2023)

The cost satisfies the upper bound (least square in Wi y1, bi+1)

min CuW®  Wii1, b, biia] < € min dp,
WO W, 3,60 by Wb plt)

with deviation w.r.t. truncated cluster centers in barycentric coordinates ,

5p = sup|[Roalual - Soaluell TATV(x ,,)
i
N;
il = DV s ATOGD) = rOP) — x5l
=

dp measures the signal to noise ratio of the truncated training input data.
Invariant under GL(Q) action in input space (incl. scalings and rotations).
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Theorem (C-Mufioz Ewald 2024)

Arbitrary non-increasing layer dimensions, data sequentially linearly
separable by hyperplanes. For Q classes of data in RM, L > Q hidden
layers, global zero loss minimizers with Q(M + 2) parameters.

Unique ordering
1—-2-—>3
Sequential application of

conical approximation to
support vector machine

Hjy
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Derivation of effective gradient flow equations

[C '25] Standard £2? cost with 7(1) := 7D o... 0 7(1)

2
w(L+1) (T(L)(Xj(g)) _ (W(L-&-l))—lyj)

RQ

(3)

Pullback metric in input space via map W(1) - input — output space.

Non-Euclidean, time dependent metric introduces many of the known
complications ("cost landscape").

Here, we propose to investigate the Euclidean £2 cost in the input space,

2
0 _
_. 22 : § :‘ (L () W(L+1)) lyj o (4)

Study the gradient flow at fixed W(+1) (quite common).
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Derivation of effective gradient flow equations

Observe: Activation o distinguishes specific coordinate system !
Polar decomposition of the cumulative weight

w® — |W(Z)|Rg

with R, € O(Q) orthogonal, and |W)| symmetric. Accordingly,

WO | = RIWR, with W > 0 diagonal

R; € SO(Q) freedom of rotating coordinate system in which o is defined.

Choose the cumulative weights adapted to activation in that ﬁg =1,
w® = wiR,

Then, truncation maps 7() independent of W*(Z), due to

(W) o (Wi%) = o(x)

Thus, 3© € RQ and R, € O(Q) parametrize the DL network.



Derivation of effective gradient flow equations

Empirical probability distribution for ¢-th cluster of training inputs

where § is the Dirac delta distribution. Let
o = (W) =1y,
for brevity, with W(@+1) fixed.

Cluster separated truncations: () acts nontrivially only on training
inputs in the ¢-th cluster.

On all other clusters, T(Z)(xg,o’)i) = XZ(,O’),- for all ¢/ # ¢, acts as identity.
Crucial for explicit construction of global cost minimizers for
underparametrized DL in [C-Mufioz Ewald 2023].
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Derivation of effective gradient flow equations

Theorem [C '25] Effective equations for 3()(s) and Ry(s)

(B9 +y) = —RISRU(BY +30)
OsRe = —URp (5)

where
JOL / d -1 HE (%),
0 RO\R? b (g, g0 (X)) H™ (x)

is a diagonal matrix with
HY(x) = 1gxq@ — H(x) , H(x) = diag(h(x;))

and
Qg:/ dx pe(agt Lo (X)) [H(x , MO(x)],
[ e, B O ) OG0
where [A, B] = AB — BA is the commutator of A, B € R?*®, and
1 ~ ~
MO(x) = 5 (x(89 +7) TR + Re(8O +7)xT)



Explicit solutions

Proposition [C '25] Explicit solutions.
e The pair (8, Ry) is an equilibrium solution if

supp (ue oap! ﬁu)) CRY, (6)
and 7 acts as the identity on the ¢-th cluster, or
supp (ue o a,;jﬁ(e)> CR?, (7)

and /-th cluster is contracted to a point.
o If the initial data (3(9(0), R,(0)) is such that

supp (e © 3, ) B\ (RE URD) 20, ®)

-1

Ro. B0 is concentrated in R®, s.t. for n > 0 small,

and the support of pyoa

S >1-y (9)

then (up to technical assumptions) the following holds.
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Derivation of effective gradient flow equations

» Solution of gradient flow translates py o ARa(s),50(s) INtO RX in

finite time s = 51 < 0.
> B)(s) — —¥, exponentially as s — oo.

> For s > s1, the weight matrix Ry(s) = Ry(s1) is stationary. In
particular, this implies that the entire ¢-th cluster is collapsed into
the point B (s) for s > s;.

Provides dynamical interpretation of neural collapse on level of training
data in input space, see [Papyan-Han-Donoho], [C-Ewald].
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Solutions to effective gradient flow equations

Seare
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Geometric structure of overparametrized DL networks

Vector § € RX of components of all weights W, and biases by,

L+1

K=> (MM_y+ M)
=1

In the output layer, we define

x[0] =" e RO, x(0] = (] [0]...., xu[0]) € RV
Map w: {1,...,N} = {1,...,Q}: Input x,(O) assigned to output y(r).-
Y, = (YI(1)7 e ,}/I(N))T e R"?

Then, £2 cost is (assume all N, equal)

CIfel] = 5]~ . [

Key observation: Cost depends on & only via x[6],
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Jacobian matrix for f : RK — RV, 9 x[6]

Oalll . Oxlf]

D[g] = {8)9—@} — W c RONXK
R 00, omle] ... O]
1 K

Therefore, Euclidean (1) gradient flow for 8(s) can be written as
056(s) = —VoC[x[0]] = —DT[8(s)]VCIx[8(s)]]
Moreover, 9sx[0(s)] = —D[0(s)]0s6(s) -
Induced gradient flow in output layer for x(s) := x[0(s)]
dsx(s) = —(DDT)[8(s)] V«CIx(s)] € R

Because rankDD T < min{K, QN}

= K > QN necessary for invertibility, overparametrized DL.
If invertible, DD"V, = gradient w.r.t Riemannian metric (DDT)~1.
Metric (DDT)~1 on ROV is source of complicated "energy landscape" !
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Trapping of orbits

Assume DDT > 0 full rank, but DD7 > X for A < 1 or 3 such A > 0.

There are no local equilibria

0= (DD")[A.] ViClxfB.]] = V.Clxle.]] = 1 (x16.] ~y,) =0
—_——

invertible

global minimum

Proposition (C'24, trapping of orbits)

Assume 3U C RK region and € > 0 such that for all § € U
| DTVACIx[0]] [rx < €| VAClx[6]] [ron
Let | = {s e R;|0(s) € U} with sp =infl and Ly := [{8(s)|s € I} N U|.

NLy 1
x[0(s0)] —y,| €
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Proof. Arc length
Ly = [{8s)seR}INU|
[ﬁﬂV@QMQM

< [l e sup [ VuCIxO(s)] |
se
2 H
= Iile (G suelcixde(s) )
= e (2 1eaeN)’
/
= I ol - v, |
where sq = inf /, using monotone decrease of cost along orbit. |

Thomas Chen Explicit global minimizers in Deep Learning



Differential geometry: Definition of gradient requires choice of metric.
Key insight: Instead of picking Euclidean metric in parameter space RX,
choose Euclidean metric in output layer, and pull it back to RX.

Theorem (C 2024)

Assume the overparametrized case K > QN, and that
rank(D[4]) = QN
is maximal in the region § € U C RX. Let
Pen[D] := D"(DDT)~! € RK*QN
Penrose inverse of D[0] for § € U, generalizes matrix inverse by way of

Pen[D]D =P P DPen[D] = lQNxQN

P = P2 = PT ¢ RK*K orthoprojector onto range of DT € RK*QN,
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Theorem (C 2024, continued)

If0(s) € U is a solution of the modified gradient flow

0:0(s) = — Pen[D[6(s)]] Pen[D"[6(s)]] VoClx[6(s)]]

= (DDT)* generalized inverse

then x(s) = x[0(s)] € ROV is equivalent to Euclidean gradient flow
dsx(s) = =VClx(s)] , x(0) = x[0p] € RO".

In particular, along any orbit 6(s) € U, s € Ry,

CIx[O()]] = e~ Clx[0,]] . x[0(s)] = y_ + e F(x(6o) — y_).

at uniform exponential convergence rates.

Pullback bundle with induced bundle metric on R¥ and bundle gradient.
Relationship to sub-Riemannian geometry.
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Relation to sub-Riemannian geometry

Invariant geometric meaning: Assume K > QN overparametrized

Then, with f: RK — R 9 x[0],
V.= f"TRON ¢ TRK

pullback vector bundle of fiber dimension QN.

Pullback bundle metric for sections V, W € I'( TRK)
h(V, W) = (f.V, L. W) rron
Bundle gradient of F: RK — R
dF (V) = h(V,grad,(F))
Then, with Jacobi matrix D = Df, coordinate representation
grad,,(F) = Pen[D]Pen[D"]V4F

In general, triple (RX,V, h) is a sub-Riemannian manifold.
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Euclidean gradient flow in output layer with s € R,
1
Osx(s) = =ViClx(s)] , x(0) € RN, with Clx] =~ |x—y, [*

Equivalent to

Oux(s) ~y) = —xi(x(s)-y,)
= x(s)-y, = e i(x(0)-y,)
= Clx(s)] = e ¥elx(o).

Exponential convergence rates are uniform w.r.t. initial data.

x, = lim x(s) =y,

unique global minimizer of the £2 cost, by convexity of C in x — Y.
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Theorem (C'24, overparametrized with rank loss)

Assume rank(D) < QN. Then, standard gradient flow yields
dsx(s) = —(PDDTP)O(s)IVCIx[O(s)]]

with x(0) = x[0,], and P orthoprojector onto range(DDT) in RON.

Generalized adapted flow: Define differential-algebraic system

9:8(s) = DT[O(s)IV[E(s)]
V[b(s)] = argming{ [D[A(s)]D7[0(s)]V + ViCIx[O(s)]] |Fan }
0(0) = 6, cRX.

That is, W[0(s)] solves via least square optimization
D[O(s)|DT[0(s)]¥ = —V,C[x[0(s)]] + minimal error in L?.
Then, x(s) = x[0(s)] with x(0) = x[f,] solves

9sx(s) = —P[O(s)]VCIx[0(s)]] -
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Theorem (C'24, overparametrized with rank loss)

0, € R¥ is equilibrium of the standard gradient flow
<= 0, is equilibrium of the geometrically adapted gradient flow.

Assume activation function o smooth. If rank(D) =r < QN in U C RK,
then any local equilibrium 8, is contained in an (K — r)-dimensional
critical submanifold M C U, generically in the sense of Sard.

Proof. Assume V,, : RK - ROV o =1,...,r, are linearly independent
column vectors of D. Obtain family of smooth functions
galt] = (Valf]. PIOIVACIX[O]] )gon

= (Valf], ViCIx[O]] )pon » @ =1,....r
By Sard'’s theorem, set of equilibrium solutions in U C RX

Mcrit =Un ﬂ ga_l(o)
a=1

is generically a (K — r)-dimensional submanifold of U. O
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Theorem (C-Ewald 2024)

Standard and modified gradient flow have same critical points, and
0:0(s) = —((1—a)+ aPen[DIo(s)]] Pen[D ()] VaClx{o(s)]],
establishes a homotopy equivalence of flows parametrized by o € [0, 1].

If D has full rank, then the time reparametrization t =1 — e=5/N,

X(t) := x[0(=NIn(1 - t))]
=s(t)

maps the flow at o = 1 to linear interpolation in output space

X(t) =1~ t)x+ty, . X(0)=x[0o] € R.
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Standard gradient flow is homotopy and reparametrization equivalent to
linear flow on straight lines towards reference outputs

Neural collapse: Cluster variances converge to zero, cluster averages
converge to reference outputs, at uniform exponential rate in
geometrically adapted flow.
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Reparametrized Euclidean flow under rank loss

Proposition (C-Ewald 2024)

Assume rank loss, rank(DDT) < QN.
Then, reparametrized Euclidean gradient flow in output space satisfies

05(t) =~ PR -y) , HO)=x , telo),

where x(t) = x[0(s(t))] and Pt := Prange(oom)[0(s(1))]-

Deviation from linear interpolation

1-—t
'Ptjf'(ﬁo_}’)

t
X(t) = (1 —t)xo + ty) = / dt' Uy = y
A -

with linear propagator Uy v

1
({M/lt,t/ = E Ptunt/ B ut/’t/ = 1Q><Q 5 t, t/ (S [O, 1) o
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Conclusion

Underparametrized DL

Zero loss global cost minimizers exist for non-generic training data
distributions, such as clustered data. Explicit construction through
complexity reduction via truncation maps. Hidden layers eliminate cluster
variances via truncation maps, and output layer matches cluster averages
to reference outputs.

Overparametrized DL

Exploit arbitrariness of choice of Riemannian structure in definition of
gradient. Construct geometrically adapted gradient flow inducing
Euclidean gradient flow in output layer with uniform convergence rates. If
Jacobian D has full rank, then standard gradient flow is homotopy and
reparametrization equivalent to linear interpolation in output space.

Neural collapse occurs in both cases, but for different reasons !
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Thank you for your attention |
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