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Deep Learning Networks

DL network for supervised learning: Inspired by brain architecture.

Input layer

L hidden layers

Output layer

Hidden layer ∼ affine map composed with a nonlinear activation fct.

Cost (loss) function on output layer, minimize over affine parameters.
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Definition of DL network

Input layer with Nj training inputs for equivalence classes j = 1, . . . ,Q.

x
(0)
j,i ∈ RM , i = 1, . . . ,Nj

Hidden layers ℓ = 1, . . . , L with activation function σ (nonlinear !)

x
(ℓ)
j,i = σ(Wℓx

(ℓ−1)
j,i + bℓ) ∈ RMℓ

and affine map with (unknown) weight matrices and bias vectors

Wℓ ∈ RMℓ×Mℓ−1 , bℓ ∈ RMℓ

Output layer
x
(L+1)
j,i = WL+1x

(L)
j,i + bL+1 ∈ RQ

Reference output vectors labeling j-th equivalence class

yj ∈ RQ , j = 1, ...,Q

Weighted L2 cost function with N := (N1, . . . ,NQ)

CN [(Wi , bi )
L+1
i=1 ] =



j=1,...,Q

1
Nj



i=1,...,Nj

x (L+1)
j,i − yj

2
RQ .

Thomas Chen Explicit global minimizers in Deep Learning



Def: ReLU (Rectified Linear Unit) activation function σ.

Ramp function, acting component-wise

σ : A = [aij ] → [(aij)+] , (a)+ := max{0, a}

Note that σ(x) = x for x ∈ Rn
+ and σ(x) = 0 for x ∈ Rn

−.

Goal: Find cost minimizing weights, biases, to train DL network.

Zero loss minimizers W ∗
i , b

∗
i yield CN [(W ∗

i , b
∗
i )

L+1
i=1 ] = 0.

Given new input, identifies its equivalence class.

Also often used: Entropy cost.
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Gradient descent

Let θ ∈ RK enlist components of all weights Wℓ and biases bℓ:

K =
L+1

ℓ=1

(MℓMℓ−1 +Mℓ) , M0 ≡ M

Merge all vectors in output layer into

xr [θ] := x
(L+1)
jr ,ir

∈ RQ , x [θ] := (xT1 [θ], . . . , xTN [θ])T ∈ RQN

Gradient descent method: Gradient flow of weights and biases

∂sθ(s) = −∇θC[x [θ(s)]] , θ(0) = θ0 ∈ RK .

Monotone decreasing

∂sC[x [θ(s)]] = −
∇θC[x [θ(s)]]

2
RK ≤ 0 ,

C[x [θ(s)]] ≥ 0 bounded below ⇒ C∗ = lims→∞ C[x [θ(s)]] exists for any
orbit {θ(s)|s ∈ R}, and depends on the initial data θ0.
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Challenges of gradient descent method

Problems: Cost always converges to a stationary value, but not
necessarily to global minimum. Typically, there may be many
(approximate) local minima trapping the orbit ("landscape"), and
identifying valid ones yielding sufficiently well-trained DL network relies
on ad hoc methods getting flow unstuck from invalid ones.
In applications, θ0 ∈ RK often chosen at random.

Paradigm: Training data (x
(0)
j,i )j,i generic ⇒ x : RK → RQN generic.

• Underparametrized case: K < QN, embedding: Zero loss global
minimum not reachable for generic training data distribution.

• Overparametrized case: K ≥ QN, typically used. Can get zero loss
global minimum if lucky.

[C-M Ewald ’23] Non-generic ⇒ zero loss in underparametrized DL exists.
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Neural collapse
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Neural collapse
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Explicit global cost minimization

[C-Munoz Ewald ’23] Cost with j-th cluster average in output layer

x
(L+1)
j =

1
Nj

Nj

i=1

x
(L+1)
j,i

Result with explicit construction: Global minimization splits into

CN [(Wi , bi )
L+1
i=1 ] =

Q

j=1

1
Nj

Nj

i=1

x (L+1)
j,i − yj

2
RQ

=
Q

j=1

1
Nj

Nj

i=1

x (L+1)
j,i − x

(L+1)
j

2
RQ +

Q

j=1

x (L+1)
j − yj

2
RQ

=
Q

j=1

 1
Nj

Nj

i=1

∆x
(L+1)
j,i

2
RQ


+

Q

j=1

x (L+1)
j − yj

2
RQ

Each of L ≥ Q hidden layers eliminates variance of one of Q clusters.
Output layer matches Q cluster averages to Q reference outputs yj .
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Truncation maps

Assuming all Wℓ ∈ GL(Q) invertible, define cumulative parameters

W (ℓ) := WℓWℓ−1 · · ·W1

b(ℓ) := Wℓ · · ·W2b1 + · · ·+W2bℓ−1 + bℓ

β(ℓ) := (W (ℓ))−1b(ℓ) (1)

for ℓ = 1, . . . , L. Define affine maps and truncation maps

a(ℓ)(x) := W (ℓ)x + b(ℓ)

τ (ℓ)(x) := (a(ℓ))−1 ◦ σ ◦ a(ℓ)(x)
= (W (ℓ))−1σ(W (ℓ)(x + β(ℓ)))− β(ℓ) . (2)

Composition property:

x (ℓ) = W (ℓ)

τ (ℓ) ◦ · · · ◦ τ (1)(x (0)) + β(ℓ)



The ℓ-th truncation maps is the pullback of the activation map in ℓ-th
layer under a(ℓ), and acts on the training data in the input layer.
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Explicit global zero loss minimizers in underparametrized DL

Theorem [C-Munoz Ewald] ∃ explicit zero loss minimizers:
- Recursively reduce j-th cluster of training data to point x0,j [µj ] where
µj ∈ R parametrizes distance from cluster center to barycenter x .

- Obtain Q distinct points {x0,j [µj ]}Qj=1 in output layer.
- Minimize cost explicitly by matching them to y1, . . . , yQ .

 
x RQ TWb TWYING

RQ
x ̅

6 b BgCxTe
L x ̅

Bsxñ Tweezie x
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Cost is bounded by deviations in barycentric coordinates

Theorem (C-Muñoz Ewald 2023)

The cost satisfies the upper bound (least square in WL+1, bL+1)

min
W (L),WL+1,b(L),bL+1

CN [W (L),WL+1, b
(L), bL+1] ≤ C min

W (L),b(L)
δP ,

with deviation w.r.t. truncated cluster centers in barycentric coordinates ,

δP := sup
j,i

[x0,1[µ1] · · · x0,Q [µQ ]]
−1∆τ (L)(x

(0)
j,i )



x0,j [µj ] :=
1
Nj

Nj

i=1

τ (L)(x
(0)
j,i ) , ∆τ (L)(x

(0)
j,i ) := τ (L)(x

(0)
j,i )− x0,j [µj ]

δP measures the signal to noise ratio of the truncated training input data.
Invariant under GL(Q) action in input space (incl. scalings and rotations).
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Theorem (C-Muñoz Ewald 2024)
Arbitrary non-increasing layer dimensions, data sequentially linearly
separable by hyperplanes. For Q classes of data in RM , L ≥ Q hidden
layers, global zero loss minimizers with Q(M + 2) parameters.

Unique ordering

1 → 2 → 3

Sequential application of
conical approximation to
support vector machine

S S

H1

H2

H3

p1

p2
p3

X0,3
X0,2

X0,1

x

x0,2

x0,3

x0,1
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Derivation of effective gradient flow equations

[C ’25] Standard L2 cost with τ (L) := τ (L) ◦ · · · ◦ τ (1)

CN =
1
2

Q

j=1

1
Nj

Nj

i=1

W (L+1)τ (L)(x (0)j,i )− (W (L+1))−1yj


2

RQ
(3)

Pullback metric in input space via map W (L+1) : input → output space.

Non-Euclidean, time dependent metric introduces many of the known
complications ("cost landscape").

Here, we propose to investigate the Euclidean L2 cost in the input space,

CN :=
1
2

Q

j=1

1
Nj

Nj

i=1

τ (L)(x (0)j,i )− (W (L+1))−1yj


2

RQ
(4)

Study the gradient flow at fixed W (L+1) (quite common).
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Derivation of effective gradient flow equations

Observe: Activation σ distinguishes specific coordinate system !
Polar decomposition of the cumulative weight

W (ℓ) = |W (ℓ)|Rℓ

with Rℓ ∈ O(Q) orthogonal, and |W (ℓ)| symmetric. Accordingly,

|W (ℓ)| = RT
ℓ W

(ℓ)
∗ Rℓ with W

(ℓ)
∗ ≥ 0 diagonal

Rℓ ∈ SO(Q) freedom of rotating coordinate system in which σ is defined.

Choose the cumulative weights adapted to activation in that Rℓ = 1,

W (ℓ) = W
(ℓ)
∗ Rℓ

Then, truncation maps τ (ℓ) independent of W (ℓ)
∗ , due to

(W
(ℓ)
∗ )−1σ(W

(ℓ)
∗ x) = σ(x)

Thus, β(ℓ) ∈ RQ and Rℓ ∈ O(Q) parametrize the DL network.
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Derivation of effective gradient flow equations

Empirical probability distribution for ℓ-th cluster of training inputs

µℓ(x) :=
1
Nℓ

Nℓ

i=1

δ(x − x
(0)
ℓ,i ) ,

where δ is the Dirac delta distribution. Let

yℓ := (W (Q+1))−1yℓ

for brevity, with W (Q+1) fixed.

Cluster separated truncations: τ (ℓ) acts nontrivially only on training
inputs in the ℓ-th cluster.
On all other clusters, τ (ℓ)(x (0)ℓ′,i ) = x

(0)
ℓ′,i for all ℓ′ ∕= ℓ, acts as identity.

Crucial for explicit construction of global cost minimizers for
underparametrized DL in [C-Muñoz Ewald 2023].
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Derivation of effective gradient flow equations

Theorem [C ’25] Effective equations for β(ℓ)(s) and Rℓ(s)

∂s(β
(ℓ) + yℓ) = −RT

ℓ J
(ℓ)⊥
0 Rℓ(β

(ℓ) + yℓ)
∂sRℓ = −ΩℓRℓ (5)

where

J
(ℓ)⊥
0 =



RQ\RQ
+

dx µℓ(a
−1
Rℓ,β(ℓ)(x))H

⊥(x) ,

is a diagonal matrix with

H⊥(x) = 1Q×Q − H(x) , H(x) = diag(h(xi ))

and

Ωℓ =



RQ\(RQ
+∪RQ

−)

dx µℓ(a
−1
Rℓ,β(ℓ)(x))


H(x) , M(ℓ)(x)


,

where [A,B] = AB − BA is the commutator of A,B ∈ RQ×Q , and

M(ℓ)(x) :=
1
2


x(β(ℓ) + yℓ)TRT

ℓ + Rℓ(β
(ℓ) + yℓ)xT


.
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Explicit solutions

Proposition [C ’25] Explicit solutions.
• The pair (β(ℓ),Rℓ) is an equilibrium solution if

supp

µℓ ◦ a−1

Rℓ,β(ℓ)


⊂ RQ

+ , (6)

and τ (ℓ) acts as the identity on the ℓ-th cluster, or

supp

µℓ ◦ a−1

Rℓ,β(ℓ)


⊂ RQ

− , (7)

and ℓ-th cluster is contracted to a point.
• If the initial data (β(ℓ)(0),Rℓ(0)) is such that

supp

µℓ ◦ a−1

Rℓ(0),β(ℓ)(0)


∩ RQ \ (RQ

+ ∪ RQ
−) ∕= ∅ , (8)

and the support of µℓ ◦ a−1
Rℓ,β(ℓ) is concentrated in RQ

−, s.t. for η > 0 small,

J
(ℓ)⊥
0 > 1 − η (9)

then (up to technical assumptions) the following holds.
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Derivation of effective gradient flow equations

◮ Solution of gradient flow translates µℓ ◦ a−1
Rℓ(s),β(ℓ)(s)

into RQ
− in

finite time s = s1 < ∞.

◮ β(ℓ)(s) → −yℓ exponentially as s → ∞.

◮ For s > s1, the weight matrix Rℓ(s) = Rℓ(s1) is stationary. In
particular, this implies that the entire ℓ-th cluster is collapsed into
the point β(ℓ)(s) for s > s1.

Provides dynamical interpretation of neural collapse on level of training
data in input space, see [Papyan-Han-Donoho], [C-Ewald].
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Solutions to effective gradient flow equations
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Geometric structure of overparametrized DL networks

Vector θ ∈ RK of components of all weights Wℓ and biases bℓ,

K =
L+1

ℓ=1

(MℓMℓ−1 +Mℓ)

In the output layer, we define

xr [θ] := x
(L+1)
jr ,ir

∈ RQ , x [θ] := (xT1 [θ], . . . , xTN [θ])T ∈ RQN

Map ω : {1, . . . ,N} → {1, . . . ,Q}: Input x (0)r assigned to output yω(r).

y
ω
:= (yT

ω(1), . . . , y
T
ω(N))

T ∈ RNQ

Then, L2 cost is (assume all Nℓ equal)

C[x [θ]] =
1

2N

x [θ]− y
ω

2
RQN

Key observation: Cost depends on θ only via x [θ].
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Jacobian matrix for f : RK → RQN , θ → x [θ]

D[θ] :=
∂xj [θ]

∂θℓ


=





∂x1[θ]
∂θ1

· · · ∂x1[θ]
∂θK

· · · · · · · · ·
∂xN [θ]
∂θ1

· · · ∂xN [θ]
∂θK



 ∈ RQN×K

Therefore, Euclidean (!) gradient flow for θ(s) can be written as

∂sθ(s) = −∇θC[x [θ]] = −DT [θ(s)]∇xC[x [θ(s)]] .

Moreover, ∂sx [θ(s)] = −D[θ(s)]∂sθ(s) .

Induced gradient flow in output layer for x(s) := x [θ(s)]

∂sx(s) = −(DDT )[θ(s)] ∇xC[x(s)] ∈ RQN

Because rankDDT ≤ min{K ,QN}
⇒ K ≥ QN necessary for invertibility, overparametrized DL.

If invertible, DDT∇x = gradient w.r.t Riemannian metric (DDT )−1.
Metric (DDT )−1 on RQN is source of complicated "energy landscape" !
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Trapping of orbits

Assume DDT > 0 full rank, but DDT > λ for λ ≪ 1 or ∄ such λ > 0.

There are no local equilibria

0 = (DDT )[θ∗]  
invertible

∇xC[x [θ∗]] =⇒ ∇xC[x [θ∗]] =
1
N
(x [θ∗]− y

ω
) = 0

  
global minimum

Proposition (C’24, trapping of orbits)

Assume ∃U ⊂ RK region and  > 0 such that for all θ ∈ U

|DT∇xC[x [θ]] |RK <  |∇xC[x [θ]] |RQN

Let I = {s ∈ R+|θ(s) ∈ U} with s0 = inf I and LU := |{θ(s)|s ∈ I} ∩ U|.

=⇒ |I | >
N LU

|x [θ(s0)]− y
ω
|

1
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Proof. Arc length

LU =
 {θ(s)|s ∈ R+} ∩ U



=



I

ds |∇θC[x [θ(s)]] |

≤ |I |  sup
s∈I

|∇xC[x [θ(s)]] |

= |I | 
 2
N

sup
s∈I

| C[x [θ(s)]] |
 1

2

= |I | 
 2
N

| C[x [θ(s0)]] |
 1

2

=
|I |
N

 x [θ(s0)]− y
ω



where s0 = inf I , using monotone decrease of cost along orbit.
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Differential geometry: Definition of gradient requires choice of metric.
Key insight: Instead of picking Euclidean metric in parameter space RK ,
choose Euclidean metric in output layer, and pull it back to RK .

Theorem (C 2024)

Assume the overparametrized case K ≥ QN, and that

rank(D[θ]) = QN

is maximal in the region θ ∈ U ⊂ RK . Let

Pen[D] := DT (DDT )−1 ∈ RK×QN

Penrose inverse of D[θ] for θ ∈ U, generalizes matrix inverse by way of

Pen[D]D = P , DPen[D] = 1QN×QN

P = P2 = PT ∈ RK×K orthoprojector onto range of DT ∈ RK×QN .

Thomas Chen Explicit global minimizers in Deep Learning



Theorem (C 2024, continued)

If θ(s) ∈ U is a solution of the modified gradient flow

∂sθ(s) = −Pen[D[θ(s)]]Pen[DT [θ(s)]]  
= (DDT )+ generalized inverse

∇θC[x [θ(s)]]

then x(s) = x [θ(s)] ∈ RQN is equivalent to Euclidean gradient flow

∂sx(s) = −∇xC[x(s)] , x(0) = x [θ0] ∈ RQN .

In particular, along any orbit θ(s) ∈ U, s ∈ R+,

C[x [θ(s)]] = e−
2s
N C[x [θ0]] , x [θ(s)] = y

ω
+ e−

s
N (x(θ0)− y

ω
) ,

at uniform exponential convergence rates.

Pullback bundle with induced bundle metric on RK and bundle gradient.
Relationship to sub-Riemannian geometry.
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Relation to sub-Riemannian geometry

Invariant geometric meaning: Assume K > QN overparametrized

Then, with f : RK → RQN , θ → x [θ],

V := f ∗TRQN ⊂ TRK

pullback vector bundle of fiber dimension QN.

Pullback bundle metric for sections V ,W ∈ Γ(TRK )

h(V ,W ) = 〈f∗V , f∗W 〉TRQN

Bundle gradient of F : RK → R

dF (V ) = h(V , gradh(F ))

Then, with Jacobi matrix D ≡ Df , coordinate representation

gradh(F ) = Pen[D]Pen[DT ]∇θF

In general, triple (RK ,V, h) is a sub-Riemannian manifold.
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Euclidean gradient flow in output layer with s ∈ R+,

∂sx(s) = −∇xC[x(s)] , x(0) ∈ RQN , with C[x ] = 1
2N

|x − y
ω
|2

Equivalent to

∂s(x(s)− y
ω
) = − 1

N
(x(s)− y

ω
)

⇒ x(s)− y
ω

= e−
s
N (x(0)− y

ω
)

⇒ C[x(s)] = e−
2s
N C[x(0)] .

Exponential convergence rates are uniform w.r.t. initial data.

x∗ := lim
s→∞

x(s) = y
ω

unique global minimizer of the L2 cost, by convexity of C in x − y
ω
.
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Theorem (C’24, overparametrized with rank loss)

Assume rank(D) ≤ QN. Then, standard gradient flow yields

∂sx(s) = −(PDDTP)[θ(s)]∇xC[x [θ(s)]]

with x(0) = x [θ0], and P orthoprojector onto range(DDT ) in RQN .

Generalized adapted flow: Define differential-algebraic system

∂sθ(s) = DT [θ(s)]Ψ[θ(s)]

Ψ[θ(s)] = argminΨ{ |D[θ(s)]DT [θ(s)]Ψ+∇xC[x [θ(s)]] |2RQN }
θ(0) = θ0 ∈ RK .

That is, Ψ[θ(s)] solves via least square optimization

D[θ(s)]DT [θ(s)]Ψ = −∇xC[x [θ(s)]] + minimal error in L2 .

Then, x(s) = x [θ(s)] with x(0) = x [θ0] solves

∂sx(s) = −P[θ(s)]∇xC[x [θ(s)]] .
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Theorem (C’24, overparametrized with rank loss)

θ∗ ∈ RK is equilibrium of the standard gradient flow
⇐⇒ θ∗ is equilibrium of the geometrically adapted gradient flow.

Assume activation function σ smooth. If rank(D) = r < QN in U ⊂ RK ,
then any local equilibrium θ∗ is contained in an (K − r)-dimensional
critical submanifold Mcrit ⊂ U, generically in the sense of Sard.

Proof. Assume Vα : RK → RQN , α = 1, . . . , r , are linearly independent
column vectors of D. Obtain family of smooth functions

gα[θ] :=

Vα[θ] , P[θ]∇xC[x [θ]]


RQN

=

Vα[θ] , ∇xC[x [θ]]


RQN , α = 1, . . . , r

By Sard’s theorem, set of equilibrium solutions in U ⊂ RK

Mcrit = U ∩
r

α=1

g−1
α (0) .

is generically a (K − r)-dimensional submanifold of U.
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Theorem (C-Ewald 2024)
Standard and modified gradient flow have same critical points, and

∂sθ(s) = −

(1 − α) + αPen[D[θ(s)]]Pen[DT [θ(s)]]


∇θC[x [θ(s)]] ,

establishes a homotopy equivalence of flows parametrized by α ∈ [0, 1].

If D has full rank, then the time reparametrization t = 1 − e−s/N ,

x(t) := x [θ(−N ln(1 − t)  
=s(t)

)]

maps the flow at α = 1 to linear interpolation in output space

x(t) = (1 − t)x0 + ty
ω

, x(0) = x [θ0] ∈ RQN .
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Standard gradient flow is homotopy and reparametrization equivalent to
linear flow on straight lines towards reference outputs

V
o v

y
g
t

i

Neural collapse: Cluster variances converge to zero, cluster averages
converge to reference outputs, at uniform exponential rate in
geometrically adapted flow.
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Reparametrized Euclidean flow under rank loss

Proposition (C-Ewald 2024)

Assume rank loss, rank(DDT ) < QN.
Then, reparametrized Euclidean gradient flow in output space satisfies

∂tx(t) = − 1
1 − t

Pt(x(t)− y) , x̃(0) = x0 , t ∈ [0, 1) ,

where x(t) = x [θ(s(t))] and Pt := Prange(DDT )[θ(s(t))].

Deviation from linear interpolation

x(t)−

(1 − t)x0 + ty


=

 t

0
dt ′ Ut,t′

1 − t

1 − t ′
P⊥
t′ (x0 − y)

with linear propagator Ut,t′

∂tUt,t′ =
1

1 − t
Pt Ut,t′ , Ut′,t′ = 1Q×Q , t, t ′ ∈ [0, 1) .
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Conclusion

Underparametrized DL
Zero loss global cost minimizers exist for non-generic training data
distributions, such as clustered data. Explicit construction through
complexity reduction via truncation maps. Hidden layers eliminate cluster
variances via truncation maps, and output layer matches cluster averages
to reference outputs.

Overparametrized DL
Exploit arbitrariness of choice of Riemannian structure in definition of
gradient. Construct geometrically adapted gradient flow inducing
Euclidean gradient flow in output layer with uniform convergence rates. If
Jacobian D has full rank, then standard gradient flow is homotopy and
reparametrization equivalent to linear interpolation in output space.

Neural collapse occurs in both cases, but for different reasons !
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Thank you for your attention !
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