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1 The model of non-relativistic, quantum mechanical
matter, coupled to the quantized radiation field

In section 1.1, we introduce the standard model of non-relativistic quantum electrodynamics. In
section 1.2, we present a simplified model which will be used for non-perturbative considerations
in later sections.

1.1 The standard model of non-relativistic QED

The object of our analysis is a non-relativistic N -electron system, confined to static nuclei, and
coupled to the quantized electromagnetic radiation field. The Hilbert space of pure states of
the full system is given by the tensor product space

H = Hel ® Hf .
‘H.; is the N-electron Hilbert space

Hy = (LQ(RS, d3.'ff) ® CQ)®aN

: (1)

and H; is the photon Fock space

o0
Hy = F = @ (L@, PR ec?)’™ | ®)
n=0
The subscripts ”el” and ” f” stand for ”electron” and »photon field”. The antisymmetrized
tensor product ®, in He;, and the symmetrized tensor product ®; in H; account for the Fermi
statistics of electrons, and the Einstein-Bose statistics of photons, respectively. The factors @2
account for the spin % of electrons, and the two helicity states of photons. We use natural units,
for which Planck’s constant 7 = 1 and the speed of light ¢ = 1.
The transverse modes of the quantized radiation field are described by the vector potential
A in the Coulomb gauge VA = 0. At time ¢ = 0, A is given by

= d3l—§; 1 - ¥ e - - aodiy =
i@ = ¥ [ o (@@ ® + E@®Ha®) . O
a=1,27B? (2m)2 v/ 2w(k) ( )
where w(E) = |l-5| is the energy of a photon with momentum k. &, A = 1,2 are polarization

vectors and satisfy

k-ak) =0, \p=12.



due to the Coulomb gauge. The triple {é}, &, l—%} constitutes a right-handed orthonormal basis.
Consequently,

&(k)-Ek) = by, A p=12.

a;(E) and a,\(E) are creation and annihilation operators and satisfy the canonical commutation

relations 5 " _‘ . Ly
[ah(kr), at,(k2)] = 0, [aa(kr), al(k2)] = xub(k1 — k2) (4)

where af = a or al. A(Z), a} (k), and aA(E) are unbounded operator-valued distributions on F.
There exists a unique vacuum vector Q; € F, such that ax(k); = 0 holds for all k£ and
). The time evolution of the free radiation field is generated by the Hamiltonian

By = :‘:‘2 f &BF w(F) al(®)ax(k) (5)

and the free time evolution of the quantized vector potential is given by

A(t,Z) = et A(F) e Hs | (6)
The free electric and magnetic fields are defined by
B(t,3) = 8,A(t,7) , B(t,&) = VAAQLT) . (7)
Let x be a smooth function in momentum space with support in a ball of radius const - am,
and let % denote its Fourier transform. o = g% = i% is the feinstructure constant. We impose
a ultraviolet cutoff on the vector potential by the convolution product
A(Z) = (Ax&)(Z) (8)

in coordinate space. This operation is justified by the non-relativistic nature of the phenomena
that are investigated.

The time evolution of the full quantum mechanical system of electrons and radiation field

is generated by the Pauli Hamiltonian
N 1 i = 2 N e

Hro = Y 5 (395 = ¢ &l@)) = X 5-0iBx() @ 1

o ik N j=1

-+ aV(fl,..,ffN) ®1l+1a ® s - 9)

e is the charge, and m is the mass of the electron. The magnetic field which acts on the j-th
electron is given by

Bz = %ﬁj AA(Z,) . (10)
g; = (0},0},0}) are Pauli matrices which act on the spin space of the j-th electron. The
potential V (7, .., Zy) is a sum of two-body Coulomb interactions
N M .
V(E, .8 = Y. 2. ZiV(E-R) + Y, V(E&-%)), (11)
i=1j=1 1<i<j<N

where R}- are the coordinates, and —Z e is the charge of the j-th nucleus, with j = 1,.., M,
and V(Z) := |Z|~".



1.2 Introduction of a simplified model

In sections 2 and 3, we will consider the full, physical Hamiltonian which has been presented
above. In section 4 and 5, we will however use a simplified model to focus on the essential
difficulties of the analysis. Hence we will introduce dimensionless coordinates in the proposed
model to emphasize its perturbative nature, and we will neglect the subleading terms. For
this purpose, we dilate the electron coordinates and the photon momenta separately, (Z;, ) —
(nZ;, p,k), by way of a unitary transformation U; on H. One obtains

N
: R = - .5 A2
pHy = UHpauiUi =) T [Uj' (—Zvj = nueAn(nwj))]
_7:1 mn
N M
o —Zj 1
+ - Zz———_‘ I+ —— 0 ® 15+ uly ® Hy .
n {i:l B =1 Ry 1<iciew |Z: — mJ'} ‘
We make the choice W = % = i, and obtain n = 2n+a’ = 2ma?, nu = a and une = ae =
2m1/20?/2. This results in
N S 128028 trgg N
H1 = < 2mn2 [Uj > (—’le -2« K(’I][MC]))]
= ®1;+1a @ Hy .
{2121 _1R | 1<i<j<N |Z; — %5 }

We will interpret 7 as a parameter independent of o, and for o = 0, we obtain
Hyo=Ha®1l;+ 14 ® Hy,

where

1
T

+ T |
'IR I} 19%’:97 |Z: — T

Hel_Z{ —A,; +Z

i=1

is the usual Hamiltonian of Schrodinger quantum mechanics. We assume that the charge
distribution of the nuclei is concentrated around the origin in R?, and unitarily transform the
Hamiltonian H, by way of Us := exp[—iTEK(ﬁ) ( ;V L 7;)]. All terms in H are left unchanged
by this Pauli-Fierz transformation, except for

UQ[—'L"—?_«,']UQ = —iﬁj + TEN(G)
and

N
Uga,\(k)Ug = al (k) +i7é) k) Z



We choose 7 := 271/2a%/2, and H; is thus unitarily equivalent to

H2 = U2H1U2
N N
= H,®1;+2r2a*?E (0 Z ) + 4mee® (Y T)* ® 1y

N
+ S {idn20%2¥; - [A(0F;) — A(0)] + dmal[A(oF;) — A0))

Jj=1

+27T1/2 5/2 E(afj) -+ 1el ® Hf 5

The quantity ¢, := 72 [§° d3km2(E) is a cutoff-dependent constant. The operator H, can be
written in the form

N N
Hy = [Ha+ g3 ) +9°) flaZ)]®1; (12)
j=1 j=1
+161 ® Hf + Wg

Wg = gW1+g2W2>

where g := 27/2%/%, f(7) i= 3 [ K LEMEED, and
Wy = / ERCro(F, N) @ a(B) + Gor(F, ) ® ax(B)]

Wy = Z / BRPH G (R, N ', X) ® al(R)al, (F)

AN

+ GalF X F,N) @ ax(R)ax(F) + Gu(k, X, X) ® al(B)ax (K)] -

The quantities Gy, are functions of (E A) or (I_c" , \') respectively, with values in the operators
on H,;. One can verify that

Gro(k, N) = Gou(k, )" =

\/kj—(ﬁ:l 6/\ k) :L‘J+7/[e zakf] (E) 6
+i_;Y_e—iaE-i,- [ - (E A E}\(E))H ’

GaolB, X RN = Gm(;‘c‘ BN =
)

( ) ( 2 k,' k, —iak-& O e—-ial_c"@'j —1
— w(k)w(E)[e ]Z[[ 1 Il

GH(E,)\; ]—C.I,X) =
KJ(E)K E’) —iak-T —iak! &,
) SN Dl —1]fe Vzadl]..
2m2y/w(k)w(k’) ; Z




The simplifications imposed on this model that we will use in sections 4 and 5 firstly consist
of the frequency cutoff k(k), which has already been introduced in section 1.2. Then, we will
neglect the coupling of the electron to the magnetic field, i.e. we will investigate a system of
scalar electrons. Furthermore, we will treat photons as scalar particles, as well, and skip the
summation over the polarization states, labelled by A. Hence, we have to redefine the Hilbert
space of the system. It shall now be given by

H _— Hel ® Hf )
with
Hel = LQ(X, dm) 3

where X = R3V is the particle configuration space of the N-electron system, and with the Fock
space of scalar photons

H; = F = P LAR?, k) .

n=0

We will study Hamiltonians of the form
Hy:=Ho+W,=Ha®15+1q @ Hy + W,
where H,; is a Schrédinger operator on He
Hy = -0+ V(z),
and where the photon Hamiltonian is now
Hy = / &k at(B)a(k) .

The interaction term acquires the form

Wi = [ @) ®al(F) + Gorlk) ® alk)]

W, = / BRdH [Coo(R) ® a' (B)al(F) + Goa(F) @ a(R)a(R)

+ G (k) ® al(k)a(k).

We will furthermore assume that V(z) is a superposition of Coulomb potentials, and scales
like V(e?z) = e~V (z), hence we will drop the terms of order g% in ( 12). We will state the
hypotheses on the coupling functions Gmn later, in section 4.2.

9  On the structure of the theory, and survey of results

In section 2.1, we will discuss the U(1) gauge invariance of the quantized theory and derive the
Ward identities. In section 2.2, we will present the results of this work.
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2 On the structure of the theory, and survey of results

In section 2.1, we will discuss the U(1) gauge invariance of the quantized theory and derive
the Ward identities. In section 2.2, we will present the results of this work.

2.1 Gauge invariance and Ward-Takahashi identities

In this section, we will use path integral methods to derive the Ward-Takahashi identities
of non-relativistic quantum electrodynamics, which express the U (1) gauge invariance of
the theory on the quantum level. We restrict our analysis to one-electron states coupled to
the quantized electromagnetic field, i.e. the case N = 1. We note that non-relativistic one-
electron states can be described with field theoretical methods because U(1) gauge invariance
implies particle number conservation in the low-energy limit. The action functional of this
system is given by

S[w*:’l/)’AZ)n*v m, J#] = /d41' {LPa’u.li + LC += LS’} 3
where L, L¢, Lg are defined as follows:

Lrait = (@) (1, = eduo(@) ¥(2) ~ ¥ @)5- (39 - eA@)) v(a)

2 V(@) FB@) Y(@) + S4@) (0 - A~ 0,8) %) (3

is the standard Lagrangian of non-relativistic quantum electrodynamics. *(p) and ¥(p)
are Grassmann field variables which transform like spinors. The bosonic field variables
AL, = 0,1,2,3 account for the ultraviolet cutoff photon field. Lp,,; is invariant with
respect to the gauge transformations

P(x) — e XxCly(g),
PH(x) —  ex@yr(g) (4)
Af — Ab+ Oxe(z) . (5)

The function x is defined by (z) = (x*&)(z), where y is a differentiable function satisfying
sup, |x(z)|, sup, [8.x(z)] < 1, and where & is the ultraviolet cutoff function defined in
section 1.1. These gauge transformations preserve the ultraviolet cutoff imposed on the
radiation field, which follows from the momentum space representation of ( 5), A*(k)x(k) —
AM(k)k(k) + i k* x(k)k(k). This is necessary to have a finite theory on the perturbative level.

Note that the four summands in Lpaui are individually gauge invariant. Thus, they will
all obtain different renormalizations, as will be shown in the next section.

As described in section 1, only the transverse part of the electromagnetic vector potential
will be quantized. Thus, we choose to work in the Coulomb gauge ﬁfi’ﬁ(z) = 0, which is
fixed by the Lagrangian

Lo = (A, (6)

/i



where « is a finite parameter (not to be confused with the feinstructure constant). Of course,
L¢ is not gauge invariant. The Faddeev-Popov method cannot be used to fix the Coulomb
gauge in abelian theory, because the ghost term in the action is independent of the gauge field
and only results in an overall normalization factor of the partition function. The Lagrangian

Ls = n*(2)y(z) + ¢*(2)n(z) + Ag(z)J(z)

couples the transverse electromagnetic field variable to the external source .J| (z), and the
matter field variables to the anticommuting sources n*(z), n(z).
The partition function Z [n*,m, j] is obtained from the functional integral

Z[n*’ 7, j] = / .D'(/}* D'l/l _DA’ ei3[¢',¢,An,,n7l',ﬂ,j]

over the field variables 9*, 1, /_1‘, and is the generating functional of the n-point functions
of the theory. A mathematically rigorous treatment of fermionic functional integrals would
require to define the field variables on a countable space. A standard method to achieve this
is to introduce box normalization, i.e. periodic boundary conditions, such that momentum
space becomes discrete. After performing functional integration in momentum space, the
box normalization can be removed by letting the volume of the boxes go to infinity. However,
we will restrict ourselves to the use of functional integrals on a formal level.

Gauge invariance of non-relativistic quantum electrodynamics requires the generating
functional Z[n*,n, j] also to be gauge invariant. This consistency condition is the source of
powerful nonperturbative identities on the quantum level. As a consequence of the fact that
the full action of the theory is not gauge invariant, we will obtain a set of constraints inter-
relating the n-point functions of the theory, the Ward- Takahashi identities. For infinitesimal
gauge transformations, ( 4) reduces to

V(@) = (@) - iexu(z)p(z) , P*(z) - ¥ (@) + texx(z)*(z) .

The term [d*z Lp,,; in the action is gauge invariant, but [d*z Lo 4+ Lg produces an
infinitesimal variation of the action functional

1o - = p * *
65 = [d'a{=(9-D)Axe - T-Fxo — iexaln'y — ¢ o)

under gauge transformation. The integrand of the partition function Z [n*,m, j] picks up
an additional factor exp(i 6S) which is approximately 1 4 6S. Gauge invariance of the
partition function thus implies that the expectation value of §S vanishes. Using the fact
that x, is arbitrary, we obtain

[ py* Dy DA {EA(V-A) =T = velitp — mp*)} ¢S =
after partial integration in §S. By definition of the partition function, this can be written as

=i (v%) — - iz e (n*(x)% + %n(@) =6,
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The minus sign in the last term is due to the anticommutation relation mws(y) T
—ws(y)w‘s(m), where r and s are spinor indices. The generating functional of connected

Feynman graphs is defined by Z [n*,n,J] = eWh"nJ) | for which
1 = W 8 = oW oW
—-A|V.— - V. J(z) —ie (n*z + —n(z)] =0 7
a ( 6J(:v)> @) = (n( ) on*(z) 677(:1:)77( )> ™

holds. The Legendre transform of W is the vertex function I', which is the generating
functional of the one-particle irreducible graphs

CW" v, Al = Whr'n, J] = [ diali(w)(a) + v @in(a) + Au(2) T(z)].

We substitute the relations

" W d
e ), = Al ,
s = I, 2 = A
; W
Mﬁ;) = n"(2), S (z) b(@),
o7 ow

i = ~1@), G = -¥'()

in Eq. ( 7) and obtain
Lo = - 6 e O e o
aA(V-A(:c))+V-m—zemw(x)—zetﬁ(x)&p*(x) =0. (8)

Functional differentiation of this result with respect to *(z1) and ¢ (z), and setting *, Y,
A equal to zero yields

T 8°I[0]
T 6y (21)89(22)6 A1 ()
The proper one-photon vertex function I‘J(-l)(p, q,P') of the interacting system is defined by

i 8°T0]
4, 14 4. Li(p'w1—prr—qz) = dofah o (1) ’
/d zd'z1d*ze 5 (z1) 59 (w)o i) — 1MW —p— )T (p,q,p) |

o .
@il %) g - ©

= ieb(zr —z;)

and the corresponding inverse electron propagator G} (p) is given by
62I0] 5
6Y* (1) 69 (z»)

The Fourier transform of Eq. (9) with respect to the coordinates z, z;, z, finally yields the
first Ward- Takahashi identity

/d4x1d4$26i(plml—m) i (277)45(.7’, -pP—q) Ge—ll(p) .

¢TI (p,q,p+q) = G3'(p) — Gallp+q) . (10)

which reduces to the first Ward wdentity
[Y(,0,5) = ~8,G5(p).

9



in the limit ¢ — 0. There are two interaction vertices which couple the electron to a single
photon line, which originate from the term

P = [die [gw*@)ﬁ(x)%w(x)+§n—w*(x)&é<x>¢<x>]

ok [20 e+ 0 A pve) + ¥ o+ 07 B ue)]

in the action. Expansion of e51” to first order in e shows that the tree level approximation
of iel",{l)(p, ¢,P + q) is the sum of the interaction vertices i:2p; and == B , Which we will
refer to as the p-vertex and the B-vertex for brevity. The B-vertex can be written in the

—

form o,q7 A¥(q) with B(q) = igA A(q) and

)
ik = Sloj,0n] .
The renormalized vertices are of the form fi(p; @)px and fy(p, q)o;xq?, therefore we find

ie ) (p, $P+9) = filp,9)pi + fo(p, q)osq?

where the functions f; and f2 have to be calculated in orders of 2 using perturbation theory.
The lhs of the first Ward-Takahashi identity produces a term f,(p, 9)0ji¢’q* which vanishes
to all orders in e? due to the antisymmetry of o;; in the indices i,j. Hence, we find no
implication of the first Ward-Takahashi identity on the correction of the B-vertex. This is
a consequence of the fact that the term 1/1*(1:)&’5(:1:)1,/)(1:) is by itself gauge invariant. In
relativistic quantum electrodynamics, one also finds that the Ward-Takahashi identity does
not make any prediction on the correction of the gyromagnetic ratio.
The remaining interaction term of the action is given by

S = [de]- Ly A, A v(a)

= | o i |t o+ 0 A0 Aarowe)| . a2

It defines the vertex —;—f%&jk which couples the electron propagator to two photon lines, and
which we will therefore refer to as the ”two-photon vertex”. The proper two-photon vertex
function F;_z) (p,q,1,p') is defined by

81T[0] "
09 (21)89(2)5 A% ()5 A* (y)
ie? (2m)*6(p' —p—q—1) T (p,q,0,0) .
From functionally differentiating ( 8) with respect to ¥*(21), ¥(x2) and A(y), and setting

o, P, A equal to zero, we obtain the second Ward- Takahashi identity in momentum space
representation

/ d4xd4x1d4x2d4yei(p'm1 —pr2—qx—ly)

T3 (0.0, Lp+9) = TO(p,,p+1) Lo+ lp+q+1) .

10



In contrast to the first Ward-Takahashi identity, the second includes corrections of the
B-vertex. The limit g — 0 determines the second Ward identity

L, 0.Lp+1) = =8, T0(p, L,p+1) .

At tree level, this result is trivial to check. The tree level approximation of I’ﬁ) (P4, l,p+q)
is2-( —-213 i) The factor 2 accounts for the two possible choices to attach the labels 7 and
k to the two photon lines. The tree level approximation of chl)(p, l,p+1) is the sum of #pk
and —ﬁajklj. The B-vertex is independent of the electron momentum D, hence it is clear
that the second Ward identity holds to lowest order.

2.2 Survey of results

In section 3, we will renormalize the parameters of non-relativistic quantum electrodynamics
in perturbation theory. Due to the increased number of interaction vertices as compared to
relativistic quantum electrodynamics, we have to consider a much larger number of graphs.
But due to gauge invariance of the theory, there are many amplitudes that cancel pairwise.
A striking difference between non-relativistic and relativistic QED is the absence of charge
renormalization in the non-relativistic case, since there is no positron production in the
low-energy limit. In conclusion, we will determine the renormalization of the energy scale,
of the electron mass, and of the magnetic momentum. In section 3.3, we will discuss the
renormalization group flow of the electron mass.

In section 4, we will rigorously prove Fermi’s golden rule for the simplified quantum
mechanical model introduced in section 1.2. The main result of this analysis will be that the
excited eigenstates of an unperturbed system of bounded electrons become unstable, when
the interaction with an external quantized electromagnetic field is turned on. They become
resonances at the presence of the radiation field. One of the main tools for our analysis
is the dilation analyticity of the interacting Hamiltonian H,. The method is based on
Balslev-Combes theory [3] which has a long, successful history in the analysis of Schrodinger
operators. By definition, resonances are singularities of the analytically continuated resolvent
on the second sheet of the associated Riemann surface.

The location of the resonances will be probed by use of the so-called Feshbach map. It
maps H, to an operator which is isospectral to the analytically continuated resolvent for a
piece of the spectrum in a small vicinity of an excited eigenstate of the free system. We will
prove a sequence of fairly technical lemmata to show the applicability of the Feshbach map,
and that it is invertible on a certain region lying in that small vicinity. The result of section
4 is that all resonances of H, above the ground state are elements of the second sheet of the
Riemann surface, spaced at a distance of order g* from the real axis. 9 is the small coupling
constant between the electrons and the radiation field.

In section 5, we will use the results of section 4 to prove the exponential decay of reso-
nances. Again, we will apply Balslev-Combes theory, and we will also take advantage of the
analyticity properties of the resolvent.

11



3 Perturbative renormalization of non-relativistic QED

In section 3.1, the collection of Feynman rules of non-relativistic quantum electrodynamics
will be completed. Section 3.2 is devoted to the one-loop renormalization of the parameters
of the theory. In section 3.3, the renormalization group flow of the electron mass will be
discussed.

3.1 Summary of Feynman rules

The interaction vertices of the theory have already been calculated in section 2.1. We will
now derive the Feynman propagators of the free electron, and of the free photon field. The
action functional of a free electron is given by

S = [ i) fm - 2 v

2m

To obtain its Feynman propagator é’el,o in momentum space representation, we perform an
infinitesimal Wick rotation of the time axis ¢t — ¢e~i , 6 > 0. As a consequence, the p, axis
is infinitesimally rotated to the opposite direction, py — pg ¥, and So,er is mapped to Séfl,.
The electron propagator is obtained from the (formal) functional integral

A = x x(y iSE '
iGoa(p) = Zg g / Dy* Dy (p)y*(p) €0t = oL
2m

 5(6) ;
with Zo e := [ Dy*Dtp e*o.et. The effect of the factor eid is equivalently obtained by a
summand ¢e, yielding
1

Zé'o)el(p) = 5 -4
Po — Jr;]% + 1€

(13)

In non-relativistic quantum electrodynamics, the electron propagator has only one pole,
not two as opposed to its relativistic counterpart. Thus, there exists only a single time-
ordering such that the two-point function (0|7 — ¥(2)9*(y)[0) does not vanish, |0) € H,
being the vacuum of the non-interacting system. As it should be, we obtain no positron
production in the non-relativistic limit, and particle number conservation is granted.

The Feynman propagator of the radiation field in the Coulomb gauge is calculated from
the action

1 d4k{

S10= 5/ Gyt {440 (8 = WP — k) A206) + 2 RAL b))

(e}

Again, one must Wick rotate the time axist — te=%, § > 0, which results in kg — kg .
The action Sy, is mapped to S}%, and the photon propagator is obtained from the (formal)

bosonic functional integral

_ 1+ (a.— 1)7Z®n AR,
k3e2i — |E|2

iGos(k) = Z5} [ DAA(k) ® Alk) 5o =

12



- . (6) e - —
where Zo; = [ DAeSt0 and 7t = l_g_l’ and where A(k) := x2(k) imposes an ultraviolet
cutoff. Again, we replace the factor 2 by a term ie, which gives

l1-7n®na -
= A(k) . 14
k§ — |k + ie (£) 14

iGos(k) = —i

for the choice a = 0.

We summarize the Feynman rules of non-relativistic quantum electrodynamics in mo-
mentum space representation, before we turn to the perturbative renormalization of the
physical parameters of the theory. Note that the raising and lowering of indices is performed
by use of &z, 6%, and &7*,

; 1 — — y 1 —7®7 7 — — - — —
S T ’—Z—&f A k

po—%-i-ie —_— 1‘7(2)—"‘:'2"""'E ( ) --------------

iLm. o s Q> —giet. e
mpJ ' 2m qu 2m ]k )

3.2 Perturbative renormalization to one-loop level

In this section, we will calculate the one-loop radiative corrections of the parameters of
non-relativistic quantum electrodynamics. The results derived here will only be relevant
to quadratic order with respect to the dimensionless electron velocity g, because the Pauli
equation approximates the low energy limit of the Dirac equation only with this accuracy.
Due to the absence of positron production, all one-loop graphs contain exactly one inner
photon line. The Ward (-Takahashi) identities derived in the previous section will be used
repeatedly to classify a number of gauge invariant families of graphs. However, we have shown
in the last section that this procedure cannot be applied to the é—vertex, because it is by itself
gauge invariant. Instead, gauge invariance induces the pairwise cancellation of a large number
of amplitudes, which we will show now. To be more specific, the amplitudes belonging to
the following graphs annihilate the ones obtained from exchanging the outermost vertices
(where the external momenta always flow from left to right):

Here ”0” denotes vanishing external momentum at the outermost external photon leg. The
reason for this cancellation is that the signs of the amplitudes reverse under exchange of the

13



vertices adjacent to the inner photon line, which can be easily demonstrated on the level
of Rayleigh-Schrédinger theory. For kz = ko2 — & - Z, the second quantized transverse
electromagnetic vector potential is given by

Az) = ;/(;171; {GA(E) k) e* + ol (k) & (k) e‘i’”} ,

and the B-field operator is obtained from taking its curl

B(z) =V A A(z) = Z/ W {a,\(k) (—ik A Ex(k)) e + ay(k) (ik A éx(k)) e‘”":} :
A
Consider first an arbitrary one-loop graph with the inner photon line adjacing to a B-
vertex and a p-vertex. The amplitude is determined from summing over a term proportional
to one of the expressions
(B, | A(k) - pu | n)(n | & B(K) | 9, Q) ,

~
—

(B0 13- B(k) [n)(n| AK)- 5 | 5,9)
in momentum space, according to the two possible ways to arrange the vertices along the
fermion line. |n) denotes an intermediate state in Her ® Hy with non-zero photon number.
Pe stands for the momentum operator on the electron Hilbert space Hea, and the vector
P, ©2¢) is the tensor product of a py-eigenstate with the photon vacuum. The only nonzero
Fourier components in these expressions are given by the terms

B, | ax(k) E(F) - pu) | m)(n | & - R A &(R) a3 (R | 7,0,)

(5,9 | ar(k) & - (=K AG(R) | n)(n | (@ (F) D) a3 (k') | 5,9)
respectively. All other terms vanish since they include annihilation operators that act on the
photon vacuum. Considering this last expression, it is obvious that the relative sign between
the amplitudes in question is negative. The same argument can be applied if the B-vertex
couples over the inner photon line and the two-photon vertex to an external classical elec-
tromagnetic potential with zero momentum. For nonvanishing external momentum g7, gauge
invariance implies that the resulting amplitudes must be proportional to o;.q%, as has been
explained in the previous section. Thus, they must vanish for momentum ¢ = 0, which is the
explanation of the pairwise cancellations in question. In fact, many of these graphs produce
pathological terms proportional to oirp’, where 7 is the external fermion momentum, which
vanish when the amplitudes are grouped in pairs. In conclusion, the following one-loop
graphs and their mirror pictures can be discarded.

Furthermore, the following graphs and their eventual mirror pictures can be verified to be
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negligible for small external electron momentum .

which contributes to the renormalization of the electron mass. Using the Feynman rules
derived in the previous section, we find

2 4 e | %
L@ (o + ko — BERE 4 i) (k2 — 1R + 1¢)

where we have used the notation 7 = % The LSZ reduction formula in scattering theory
states that the on-shell transition amplitude between two asymptotic one-particle states is
obtained from fixing the external electron lines of the two-point function to the mass shell,
yielding p, = lzzilmf It is tempting to do so now, especially in view of the amplitudes that
are familiar from Rayleigh-Schrédinger theory. However, note that the Ward (-Takahashi)
identities apply to the general n-point functions, which are defined for arbitrary tuples (po, D).
Applying the Ward (-Takahasi) identities to the on-shell amplitudes corresponds to the same
error as stating that 9, f(z, Y)|e=g(y) €quals 9yf(9(y), y) for arbitrary differentiable functions
f:R* - Randg: R — R. Thus, we have to fix the external electron lines to the
mass shell after application of the Ward (-Takahashi) identities. In relativistic quantum
electrodynamics, one is much less tempted to make this error due to relativistic covariance
of the theory: One is less likely to treat po any differently from 7.

We can now continue our calculation. For simplicity, we assume A(l;) to be a step
function that imposes a sharp ultraviolet cutoff at momentum ). The integrand has two
poles at positive Re(ky) in the lower half-plane, and one pole at negative Re(ko) in the
upper half-plane. We choose a loop in the upper half-plane for the ko-integration contour,
which yields 22|—’I%’| times the nonsingular factor of the integrand at ko = —| El . With a slight
abuse of notation, where we write k for |E|, we thus find

ﬁ 3k (6jx — njmy)p? p* %)
T

All amplitudes that will be computed in this section include the same ko-contour inte-

gral that has just been demonstrated. Thus, we will always start directly at this step of

(15)
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the calculation in what follows. We can now apply the first Ward identity do derive the
corresponding one- and two-photon amplitudes for zero external photon momentum. This is
achieved by taking the derivative of ( 15) with respect to the external electron momentum
P, and multiplying the result by a factor (—e). We obtain a sum of two terms

i€ 1 &k 2(64 — njmy)ph N / CE (S — nin)pd p* 5+ k)
(

m? e : %) (16
S O b — k- 22 O T Gy g - G, A (9

The first term is identical to the sum of the amplitudes of

as can be checked by direct calculation, where a factor 2 must be accounted for each two-
photon vertex, since there are two possibilities of labelling the adjacing photon lines. Because
time reflection invariance is broken in the nonrelativistic limit, the flux direction of the incom-
ing photon momentum (which we assume to be zero wherever we apply the Ward identities)
is uniquely defined, and indicated by the arrows. From power counting, we conclude that
the first term in ( 16) is logarithmically divergent, whereas the second one is finite, and of
higer order in f:z'

Using the second Ward identity for zero external photon momentum (i.e. deriving ( 16)
with respect to p, and multiplying by (—e)), we obtain four additional amplitudes, two of
which can be discarded, since they correspond to higher order corrections in e. The two
remaining terms

—2‘62 d3E 2(5jk — N nk) A(E) ﬁ d3]; (6:,]9 — Ty nk)pipk A(E)
m? J (2m)° o(py — k — Btk m2 S (27)% ok(py — k — (ZHh)?)2
are associated to the graphs

respectively. Again, the first term is logarithmically divergent, and the second term is finite.
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We can now evaluate ( 15) for small external fermion momentum, setting p’ and p, = '211;
equal to zero, where the latter is now fixed to the mass shell. In this limit, the inverse mass
of the electron is renormalized by the term

—i| P2 2% & dk _ =i|p]? 2¢ A
dw 3Inddy VTH4s  Dm Wlog 1+% ’ (17)

which must be added to the inverse electron propagator —ipo + z'|2—’7]7§. In this calculation, we
have substituted the new variable x :— % € [o, ’5\], and have used the formula,
8. ik
dQ (6 — njng) = !
/52 k ( Jk j k) 3
in the numerator of the integrand. S? is the two dimensional unit sphere, df); is the inte-
gration measure on S2, and the subscript corresponds to the point located at the tip of 7.

It can be shown in the same manner that the corresponding radiative corrections of the p-
and the two-photon vertex are given by

—iep 2e? A €26, 2e? A
e 48 i = S
m 312 log (l T 2m) : 2m 3l Y tk 2m /]’ (18)

for small 5, which have to be added to the tree level vertices 2 and =i respectively.
m 2m
As explained in the previous section, it is not possible to derive the amplitudes associated
to the graphs

o g, ——— -—

from the Ward (-Takahashi) identities. In order to calculate them directly from the Feyn-
man rules, it is appropriate to consider pairs of graphs with opposite relative positions of
the interaction vertices adjacing to the inner photon line, to obtain the desired radiative
corrections proportional to oyqt. Moreover, a factor 2 arises due to the two-photon vertices,
as explained above. Consequently, the total amplitude associated to these graphs is given
by

o —e3/ e —G- (kA Ay) L G (krAy) ®
@R 2k — b~ BEEE) T oy, _ g i)
After some algebra, and setting py and p'in the denominator equal to zero, we arrive at
€ o oo m e pde de
o & (TN Aa) 3 [ Trn) (9

The second dominant family of one-loop graphs is characterized by an inner photon line
that joins two B-vertices. The corresponding radiative correction of the electron propagator
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is given by

and is associated to the amplitude

@k ok (69 — nind)o kS
z(_z)[_zi]% = orik’( n ni(;g AGR) .
m ( 7T) 2]{:(])0 — k- Q’z_mL)
The expression in the numerator reduces to 0rik" (69 — nind)ogk® = —2k2, which simplifies

the integral to

) 37 2 =
4;:2 (;l,’ri;3 2k (ﬁ+E)2 A<k) 2
2k(p0 —k - om )

(20)

From power counting, we conclude that the result diverges quadratically. In the limit of
small 7, where § and p, are set equal to zero in the denominator, we see immediately that
the quadratically divergent term is independent of p. Its value in this limit is given by
%"f (ﬁ)z, which is a shift of the electron energy scale denoted by p,. However, Taylor
expansion of ( 20) up to second order with respect to = generates a logarithmically divergent

term,

ilp? e a3k 2 k?

—— A(k
om 4m? J (2n)3 2h(po — k — G2 )2 (k) ,

which contributes to the radiative correction of the inverse electron mass. Applying the first
Ward identity, i.e. taking the derivative of (20) with respect to 7, and multiplying by (—e),
we find

ie3 / Pk 2k G+ K) AG)
3 3 A )
md2m)° oh(py — & — ERE Y2
which is the amplitude of the graph
—Q— : —Q
Application of the second Ward identity yields
—iels. 3L 2 .
e [ A%k 2k AGR) |

4dm3 (2m)3 2%k(po — k — (ﬁ;nk;)z)g
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which is the amplitude of

The second term that arises from the p-derivative corresponds to a contribution of higher
order in e, and has been dropped. After setting the external electron momentum equal to
zero, and fixing its energy to the mass shell, we obtain the radiative corrections of the mass,
the p-vertex, and the two-photon vertex

PP ¢ (& dnw ief e’ /ﬁ dk Kk —ie®by e [on dk &
2m  2m? 0 (1 ot ’9)2 : m 2m2 0 (1 + K,)2 2 2m 22 0 (1 s ’{)2 ’
respectively.

The correction of the B-vertex belonging to this family of Feynman graphs

is "invisible” in regard of the Ward-Takahashi identities. Its amplitude is given by

—edojrgd 3k 2 k2
3 3 k)2
5md | @) k(g — k- B

—eoig’ €2 [am dk &
2m 2m2 Jo (14 k)2

-A(k) — (21)
in the limit of small external electron momentum. In contrast to ( 19), this correction of
the B-vertex is given by the same logarithmically divergent factor as the other graphs in its
family. Thus, all logarithmically divergent one-loop corrections with two B-vertices adjacing
to the inner photon line contribute solely to the renormalization of the inverse electron mass
L yielding the contribution

1 e % de & 1 e? A 1
= 2/ 2T o P S |
m2r2Jo (14 k) m 2w 2m Lok &2
For the total renormalization of the inverse electron mass, we thus obtain from this and ( 17)
1 1 2¢? A e? A 1
— —4q1 — — |log 1+ — =2 g L ba— | 2
m m{ 37r2[09<+2m>J+27r2[09<+2m) 1+2Tm}}
1 e? A e 1
= =41 —~—lgll g 2 L
m { 6m2 9 ( L 2m) 221 + 2Tm} @)
The p- and the two-photon vertex are renormalized by the same value, which is in agreement

with the Ward (-Takahashi) identities. For this reason, the term ;- (5'—eA)? in the Hamilto-
nian is renormalized by replacing — with ( 22). The radiative correction of the gyromagnetic
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ratio of the electron is implicit in the renormalization of the E—vertex, given by

—eojrg’ —eo kg’ i e? /% dk K " e? (3 dk K
—_— .—) —_— — _ —
2m 2m 3m2Jo  (1+k)2 " 272 Jo (1+ k)2
—eo kg’ e? A e 1
= — Bl G fpellgg A ) & T
2m { e Og( +2m) 6m214 2= [

due to ( 19) and ( 21). We observe that the difference between the renormalization of the
B-vertex and the inverse electron mass is a finite additive term

I |
——
37r21+7m

which originates from the renormalization of the gyromagnetic ratio of the electron. If we
choose the photon energy cutoff to be given by the electron rest energy, A = m, as Bethe
did in his original derivation of the Lamb shift, we obtain the value

e2

9n?

This is a fairly good approximation of the famous relativistic result derived by Schwinger,
o = -8‘;—22. It shows, as Bethe’s calculation of the Lamb shift also does, that the seemingly
ad-hoc choice of the cutoff A = m does have physical significance in non-relativistic quantum
electrodynamics. The usual argument for choosing this value is that the relevant part of the
energy spectrum in the non-relativistic limit is located close to the point on the mass shell
which corresponds to the electron rest mass. Thus, all energies involved in the theory can
exceed the electron rest energy only by a small fraction, even in case of virtual states, since
otherwise, the non-relativistic limit would simply not be valid. The cutoff imposed due to
this heuristic argument leads to results which are in very good agreement with experimental
data, i.e. the Lamb shift and the anomalous magnetic moment.

3.3 Renormalization group flow of the electron mass

Using the results derived in the previous section, we will now analyze the renormalization
group flow of the electron mass. Note that due to the absence of charge renormalization
in the non-relativistic limit, it is the mass renormalization that accounts for the qualitative
behaviour of the interaction for varying energy scales. According to the standard renormal-
ization procedure, the renormalized mass (122) is given the (constant) physical value mp of
the electron mass, hence

%:ﬁ{l—i—ilog(l-&-m)}- (23)

This equation implicitly defines the dependency of the bare mass mp(A) on the cutoff fre-
quency A. Put more precisely, the invariance of this equation with respect to redefinitions
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of the renormalization point A induces the renormalization group flow of the bare mass. We
obtain the Callan-Symanzik equation for the flow of the bare mass by applying the operator
9 to both sides of ( 23), which yields

__(9,\m3(/\) 1_3_alo e A _3£ 1 _3_(! 1
T Tms() ar I\ " T 2mp 4m2mp(\) + X[ ~ 4m 2mp(N) + A

 after some rearrangement of the summands. Since (23) implies that mp(\) = mp + O(a),
we observe that this equality is of the form

Ohmp(N) 3a 1
0=—ﬁ5570+0m»—5(5513+0m0.

Only keeping the leading order terms of order O(1 = a°) in the brackets, we obtain the
approximate flow equation for the mass

8)])’&3(/\) - _3_& 1
mp(A) 4w 2mp+ A

Integration with respect to \ results in

log(mp())) = —2—:log (2mg + X) + const ,
which finally yields
. 3mR 2—::
mB(A) =MmMmpg (“27)’”2 5 /\>

for the initial condition mp(A = mg) := mp. The renormalization group equation for the
bare mass is a consequence of the invariance of the theory with respect to redefinitions
of the renormalization point. The physical implication is that it also expresses the scale
transformation invariance of the theory. This is because a change of the momentum scale
by a factor s results in a shift of the renormalization point by s. Since mp 1s invariant with
respect to this scale transformation and to the corresponding shift of the renormalization
point, one recovers the Callan-Symanzik equation derived above. Assuming that a certain
value has been attributed to m B(Ao) at some fixed renormalization point A, the TUNNING mass
m(s) = mp(sA) shows how the electron mass of the interacting system varies effectively for
a change of the momentum scale. In our case, Ao = mp implies that s € [0, 1].
The scaling limit of m(s) for s — 0 is given by

m(0) = mpg (g) = A Mg {1 + i—:log (g)} : (24)

which is ( 23), solved for mp(A) with the substitution \ —s mr = mp(A = mg). The limit
§ = 0 in momentum space is equivalent to the scaling limit 1 — 0o in the Euclidean R?,
i.e. the limit of macroscopic dimensions. Thus, ( 24) corresponds to the macroscopically
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observed, effective mass of an electron that is spatially restricted to a microscopic system.
As an example, consider bound state electrons confined to atomic orbits. The reference
length scale at which m(s = 1) = mg is fixed, is the Bohr radius, whereas the macroscopic
experimenter makes his observation at a (relative) scale s — 0. Therefore, the experimentally
observed effective mass in this case is the one given in ( 24), and not the classical electron
mass mg, as is exemplified by the Lamb shift.

As a contrasting example, measurement of the Compton process involves free electrons
upon which no intrinsic microscopic length scale is imposed, in the contrary, the electrons
follow paths of macroscopic extension. Accordingly, the experimenter does not measure any
electron mass that differs from its classical value (in the Compton experiment, the momentum
and the velocity of the electron are both measurable, hence the mass is known).

In conclusion, we summarize some phenomenological issues on the observation of quantum
processes and the renormalization group. The prescription of attributing physical values to
the renormalized parameters of a quantum field theory shows that the relevant scale of the
quantum process of interest defines an intrinsic scale of the problem. The correspondence to
the length scale that is intrinsic to the observer is induced by the renormalization group flow
of these parameters. Similar to active and passive transformations of coordinate systems,
the renormalization group equations express the physical self-similarity of a quantum field
theory under ”active” scale transformations, as well as the invariance of the theory with
respect to "passive” changes of the renormalization point. Here one finds g ” principle of
relative scales” which is very similar to the principle of relativistic covariance. In special
relativity, the only sensible way to specify the intrinsic length of an object or the intrinsic
duration of a process is to do so with respect to the rest frame of the given system. In
all other frames, the observed values vary with the ratio of relative velocities. In analogy,
the parameters of a quantum field theoretic system are given the classical, "physical” value
at the intrinsic or "proper” scale of the problem. The observed values are functions of the
relative scale difference between the quantum system and the observer system. In case of
large discrepances between these scales, the observed parameter values are scaling limits
under the renormalization group flow.

22



4 Radiation theory of atoms and molecules

In section 4.1, we introduce conceptual facts about resonances and dilation analyticity. In
section 4.2, we verify that Balslev-Combes theory can be applied to the given problem. In
section 4.3, we introduce the Feshbach map, and in section 4.4, we prove Fermi’s golden rule.
The presented proof is an extended version of the one given in [5]. In the following, we will
consider the simplified model introduced in section 1.2.

4.1 Resonances and dilation analyticity

Our intention is to study the fate of excited energy states of the N-electron Hamiltonian
Hg from section 1.2, if the coupling to the radiation field is turned on. These eigenvalues are
embedded in the continuous spectrum of Hy = H,;+ H #» but become resonances at the presence
of Wy, as we will prove in section 4.4. The location of the resonance energies are predicted by
Bethe’s calculation of the Lamb shift, and by Fermi’s golden rule.

For the spectral analysis of H,, we will use the framework of Balslev-Combes theory 3].
Let U, (6) be the one-parameter group of unitary dilations on the N-electron Hilbert space
Hea = (L(R, d*z))®N | given by

3Ne

(Ua(0)9)(Z1, .., Zy) = eTgb(eo:'c‘l,..,eofN), peEHy, O€R.
3

Ng

Due to the factor e*z", Ue() becomes unitary. Let Co(R?) denote the one-photon space of
continuous and compactly supported functions. One defines the one-parameter group of unitary
dilations Uy(#) on Cy(R3) by

(U0 (k) = e F), feCy®R?), geRr ,
and the spectral deformation on the Fock space F given by
Us(0) al(f) Us(6) ™" = al(Uy(8)f) .

Accordingly, we define the one-parameter group of unitary dilations I/ (0) on the full Hilbert
space H = H, ® H; by
U0) =Uq(0) ® Us(0) . (40)

U(6) can be represented as e?44 where
Aa = Aa ® 15 + 14 ® A, (41)

is the anti-self-adjoint infinitesimal generator of dilations, and in which
Ag = (5 Vs + V5, 7)

Ay

Il

N[ = DN =

Nel
2.
J=1
T / @'k al(F) (F Vi + Vi E) an(F)
A
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are the dilation generators on He and Hy, respectively. A vector ¥ € H is dilation analytic if
there exists a vector valued continuation of I/ (0)¢ to a strip [Im(6)| < a. To use dilations for
spectral analysis, one considers the family of operators A(4) = U (0)AU(6)~1, associated to a
given operator A on H. An operator A is said to be dilation analytic, or of class F,, if A(6)
can be analytically continuated to [Im(8)| < a.

We will now give a definition of resonances by use of Balslev-Combes theory. It will be
shown in section 4.2 that H, is dilation analytic. Anticipating this result, we consider

(2, (Hy = 2) ") = (U(0)n, (H,(6) — 27O, Y, eH, R (42)

which holds due to the unitarity of U(#). Assuming dilation analyticity for the vectors Py,
2, We continuate 6 into a complex neighborhood O C C* of {0} (for a discussion of domain
problems, see [5]). The identity ( 42) holds for 6 € O, since it holds for all real 8. The rhs of
(42) can be analytically extended from C* over the real axis to the part of the resolvent set of
Hy(0) which lies in C~. Hence, one obtains an analytic continuation of the lhs of (42). Since
the thresholds and eigenvalues of H,4(0) do not depend on 6, resonances can be defined as the
complex eigenvalues of H,(6).

The imaginary parts of these eigenvalues are specified by Fermi’s golden rule, which will be
proved in section 4.4. It states that all eigenvalues of Hy,(6) except for the ground state energy
have non-vanishing imaginary parts.

4.2 Dilation analyticity of the Hamiltonian H,

We consider the Hamiltonian Hy = Hi®1l; + 1,0 H r + Wy, and show dilation analyticity
of its three constituents individually.

The kinetic energy operator T = —-A,, T = (Bryoos By i Hyy = T V(z) is dilation
analytic, with 7(f) = e=2T. The potential V' has been assumed to be a sum of two-body
Coulomb interactions in section 1.2. V(z) thus scales like V(0) = eV, and is dilation analytic.
The discrete spectrum at(iel) of Hy(6), the thresholds, and the resonances are independent of 4.
The continuous spectrum Uéil)(Hez) is modified by complex dilation, and will consist of branches
of continuous spectrum which emanate from the thresholds, and which are rotated by an angle
2¢ into C~, where ¢ := Im(#) > 0. Thus one has

Hy(ig) = —e 29, + o~ V(z) (43)

for & = i¢ € C*. Spectral analysis of N-body Schrédinger operators by use of Balslev-Combes
theory has been subject to intensive study ever since the original paper [3] appeared.

The dilation of the Hamiltonian 7 of the radiation field requires the choice of a one-photon
basis {f;} on Cy(R3), and to represent Hy in terms of al(f;), a( f;) by way of

Hy = Z(fi,wfj)a*(f,-)a(fj) :

ij
Using (f;,wf;) = fd3Eﬁ(E)W(E)fj (k) and the usual definition of a*(f), one obtains that
Hy(0) = > (fuwofy) al(fi)als;)

i,J
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where wy(k) := w(e~k). For the dispersion w(k) = ||, one finds that Hf(60) = e™%H;. Note
that since the modulus function |-]: R® > R+ is not analytic, one has to extract the factor
e~ from | e‘ela before analytic continuation. The spectrum of H consists of a single eigenvalue
{0} at the bottom of the continuous spectrum, corresponding to the vacuum state ) 7- There is
no separation between the point spectrum and the continuous spectrum of Hy because photons
are massless particles. For § = 19 € C*, the continuous spectrum of Hy(i¢) which emanates
from {0} is rotated by ¢ into C-.

The spectrum of the complex dilated, free Hamiltonian Hy—o(i®) thus consists of branches
of continuous spectrum of 7(i9), which emanate from each element of the spectrum of He(ig),
from each threshold, and from each resonance, cf. the following figure.

We have introduced the interaction Hamiltonian W, at the end of section 1.9, The dilated
Wy(0) = gW1(6) + g>Wa(6) is characterized by the coupling functions GO.,l1<m+n<2
which are defined by

Wi6) = [EHCRE) @al(E) + GOF) © o(B)

Wa(8) = / CRCR[GH (F) @ at(R)al (7)) + G (%) ® a(R)a ()

+Gi(F) @ ol (R)a(i) .

For m +n = 1, one finds the scaling behaviour GO (k) = 3/ *Gmn(ek), and GO (k, k') =
639Gm,n(e‘eﬁ, ek ) for m +n = 2. The coupling functions are dilation analytic, and hence

have analytic continuations for € C+. We choose 0 = i¢) € C+ in the following.

Hypothesis 1 Form+n =1 and & € R3 G,(};”,),(E) are analytic functions with values in the
quadratic forms on the domain of (=A,)s.
(k, K ) € RE@ RS, Gﬁ,’}f’,’,(l-c‘, ) are analytic functions with values in the bounded operators on
Has
The smallest non-negative function J which satisfies

Sup [| (=42 + )4 G R (-A. + 1)1 || < J(R)

$<do
form+n=1, and

sup || GSO\(K, F') || < J(k)J(#)
?<¢o
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Spectral analysis of N-body Schrédinger operators by use of Balslev-Combes theory has
been subject to intensive study ever since the original paper [3] appeared.

Dilation of the radiation field Hamiltonian H s requires the choice of a one-photon basis
{fi} on Cy(R?) to represent Hy in terms of af(f;), a(f;)

Hy = 3 (fywh;) a (fa(f;) .

1’.7

Using (f;,wf;) = [d3k ﬁ(E)w(E) f;(k) and the usual definition of a*(f), it follows that

HY = 3 (fiwofy) al(falfy) |
1,7

where wy(k) = w(e~%k). For the dispersion relation w(k) = |k|, one finds that H}Q) =
e~’Hy. Note that since the modulus function |-] : R®* - R* is not analytic, the factor e~
must be extracted from [e"’/ZI before analytic continuation. The spectrum of H; consists
of a single eigenvalue {0} at the bottom of its continuous spectrum, corresponding to the
vacuum state 2y. There is no separation between the point spectrum and the continuous
spectrum of Hy, since photons are massless particles. For = i¢ ¢ C™", the continuous
spectrum of H)(ci‘f’) that emanates from {0} is rotated by ¢ into C~.

The spectrum of the complex dilated, free Hamiltonian HS(,ZZ’& thus consists of branches

of continuous spectrum of H }ieﬁ) , which emanate from each element of the spectrum of A Sd’) ,
from each threshold, and from each resonance, cf. the following figure.

E, E; ) 2Im(©)

We have introduced the interaction Hamiltonian W, at the end of section 1.2. The unitarily
dilated W(®) = g ® +9°Wi? is characterized by the coupling functions GO 1<m+n< 2,
which are defined by

WO = [EHGHR e d'(F) + CORF) ® a(f)]
W = [ @RERIGEF) © al (R)at (7 + GG () ® a(k)a(R)
+GQ(F) ® al (B)a().

We have G (k) = %G (€7k) for m+n = 1, and GO (k, k) = G n(e~k, e~0F') for
m+n = 2. Thus, the coupling functions are dilation analytic, and we choose § — i¢ € Ct,
The properties of the coupling functions are specified in the following hypothesis.

25



fOT m + n= 2, and all E’ E/ E R3, obeys
D) i= [ PR +w(F)04m) 7B P} < oo

for some 3 > 0.

4.3 The Feshbach map

It will be our intention in section 4.4 to investigate the location of the spectrum of H(i¢) in the
vicinity of the excited energy eigenvalues of H,;, with o > 0. Consequently, we will consider an
arbitrary excited eigenvalue E; of H,, and the corresponding eigenspace with projector P;. We
will furthermore introduce an auxiliary ultraviolet cutoff po on photon energies and consider
the complex dilated projector Fy(i¢) = Pi(i¢) ® XHy<po O H, where x; is the characteristic
function on the interval 7. The Feshbach map will be introduced to map H,(i¢) — z isospectrally
to an operator fp,(Hy(ip) — z) on the strongly reduced Hilbert space Fo(ig)H, for z in a
complex neighborhood of E;. Fermi’s golden rule is proved by showing that Froio) (Hy(igp) — 2)
is invertible for z in a specific complex neighborhood of E;.

To give a general definition of the Feshbach map, we assume that a bounded, but not
necessarily orthogonal projector P on a Hilbert space H is given. Furthermore, we consider a
densely defined, closed operator H on H, whose domain contains the range of P. Consequently,
one obtains the complementary projector P = 1 — P, and the operators H p = PHP and
Hs = PHP. H p 1s an operator on PH, and for » € p(Hp), one can define the resolvent

Rp(H - 2) = P(Hp — 2)"1P (44)
on PH. p(a) denotes the resolvent set of an operator A. The Feshbach map is defined by
fe(H = 2) = P(H — z — HRp(H — 2)H)P (45)
provided that z € p(H p), and provided that the additional assumptions
| Re(H — 2)HP || < o0 » || PHRp(H — 2) | < o0 (46)

hold. Moreover, Sp(z);= P — Rp(H—2z)HP is a family of operators which satisfies Ker{Sp(z)}
Ran{P}. The Feshbach map has the following isospectrality property.

Thm. 1 (Feshbach map) Let the assumptions ( 46) hold, and let » ¢ p(Hp). Then, with
Of = 0, Opp,
z€oy(H) <= ze{z|0¢ oy (fr(H — 2))} .

The eigenfunctions of the operators Hp and fp(H — z) are related by

Ker{(H - 2)Sp(2)} = Ker {fp(H - 2)}

PKer{(H - 2)} = Ker{fp(H — 2)} .

These relations imply dimKer {(H — 2)} = dimKer {fe(H — 2)}. o
A proof can be found in [5]. In our case, the projector P will be given by Po(ig) = Pi(ig) ®
XHy<po, and H will be represented by Hy(ig).
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4.4 Proof of Fermi’s golden rule

The Hamiltonian H, has a single eigenvalue, the ground state energy Ej, which lies at the
bottom of its spectrum, located at the tip of the continuous spectrum. The existence and
uniqueness of a ground state in systems of confined electrons which are coupled to the radiation
field have been proved in [5, 6]. In this section, we will prove that all embedded eigenvalues of
the non-interacting system above the ground state become resonances when the interaction is
turned on. According to the definition of resonances in terms of Balslev-Combes theory given
in section 4.1, we will try to find the locations of complex eigenvalues of the complex dilated
Hamiltonian

Hy(i¢) = Hu(i¢) ® 15 + 1, ®e™H; + W,(i) (47)

in the vicinity of excited eigenvalues E; of H,, for ¢ > 0. Our proof is different from the
one given in [5], in that we use dilation analyticity of the full Hamiltonian, and not only of
the field Hamiltonian. It was not necessary in our case to introduce an artificial spatial cutoff
on the electron wave functions in Wy (i¢). This advantage is however traded for the loss of
self-adjointness of the N-electron Hamiltonian. Many arguments in [5] based on the spectral
theorem will be substituted by considerations about the numerical range of an operator. The
numerical range Num(A) of an operator A on 7 is defined as the set

Num(4) = {(, 49) |4 € H, (v,9) = 1} c C. (48)

We will use the following lemma.

Lemma 4.1 For z € p(A), the bound | (A—2)"1] < [dist(Num(A), 2)]~ holds.

Proof Due to the Cauchy-Schwarz theorem, one has || (A — 2% || > |(¥, (A - z)v)| for
(¥,¥) = 1, and 2 € C. Then it follows from the definition of the numerical range that
|(%, (A = 2)¥)| > dist(N um(A), z), where dist is the distance function on C. Consequently,
one has the bound || (4 — z)~lp | < [dist(Num(A),z)]! for all n with (n,m) = 1, and the
assertion of the lemma follows. e

We will extensively use the fact that the potential V in H,, is a superposition of Coulomb
potentials and satisfies a Kato bound.

Lemma 4.2 Let T = —A, be the kinetic energy operator of the N-electron system. To each
€ < 3, there exists a constant b(e) < oo such that

IVHI< el Tyl +b(e) |4 . o (49)

For a proof, see for instance [8].

We consider an excited, Nj-fold degenerate energy eigenstate E; of H,,. Its corresponding
eigenspace &; C H,; is spanned by the N; eigenvectors Ynl=1.. Nj, which satisfy Hepp;, =
E;v;,. We denote the orthogonal projection #,; — &; by P;, which has a finite range. After
complex dilation, E; remains an eigenvalue of H,(i¢). The complex dilated projector P;(i¢)
is not orthogonal anymore, but its range is still finite, and for two distinct eigenvalues E; and
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Ey, the relation P;(ip) P (ip) = ik P; (i) is still valid. We note that the components of the
Nj x N; matrix T;

—, —

[Tilw = / Y am / &k (Gm(’;)%,t,dXHfSEGlo(k)TPj,l')5[w( ) — E; + E] (50)

-0

Hypothesis 2 For j > 1 we assume that the transition matriz T; associated to the eigenvalue

E; is self-adjoint and positwe definite.

It is our intention to study the spectrum of Hy(ig) in the vicinity of E; by use of the
Feshbach map. Hence, we define the projector

Fy(ig) = P,?(Z¢) ® XH<po

on H, where pg is a cutoff on photon energies, and Xr is the characteristic function of the
interval I. Its complementary projector yields

Py(ig) = Pi(ig) ® XHp<po + PJ(Z¢) ®1y
with P;(i¢) := 1 — P;(i¢). Thus we can define the Feshbach map
Frotie) (Hy(i6) — 2) = Po(ig)[Hy(i¢) — 2 — Wo(i0) Ry (i) (Hy (i) — 2)W, (ig)] Po(igh)

provided that the assumptions (146) hold.
Applicability of the Feshbach map

We will investigate the spectrum of Hy(i¢) in a ball D(E;, %) of radius £ around E;. Hence

we have to verify that the Feshbach map is defined for z ¢ D(Ej, 2) by showing that the

conditions ( 46) hold. For this purpose, we will prove the following lemmata 4.4 ~ 4.11, and
use the notation H, = Hgy—o. As a consequence of lemmata, 4.1 and 4.2, we obtain an estimate
on the numerical range of Hy_o(id).

Lemma 4.3 Let e < % and b(e) be the constants specified in lemma 4.2, and let ¢ < Sin2e

in 2
sing °
Then, Im(z) < b(e)siné for all z € Num(Hy—o(i¢)).

Proof For any vector V=194 Y5 € H, one has

<¢’ Hg=0(i¢)"/}> & e_2i¢(7/)el,T"r/}el>el =+ e_i(p(z/)el, V¢el>el
+ ey, Hpypy),

where (), and () ¢ are the scalar products on H,, and Hy, respectively. One finds that
<¢ela Twel)el = fdxlvwwel(m)lz > 0, where z := (511 -->fN), and <wel, V"pel)el = fde(x)]z/)el(x)IQ

27



for the contributions on Her. Furthermore, H 7 1s self-adjoint and non-negative, hence (1 fs Hehr) s >
0.

Using the Cauchy-Schwarz theorem, the Kato bound for V can be shown to imply | (1), Vipar)| <

€(ter, TYer)er + b(e) (Vet, Yer)er, where we have used the positivity of the scalar products on the
rhs. For (e, Yer)er = 1, one thus finds that

<¢ela V%z) = —€<¢el,T¢el>el = b(é) .

The imaginary part of (¥, Hy—o(igp)t)) is given by

—8in 2¢ <¢el>T¢el)el - Sin¢(¢ebvwel>el = Sil’l¢<¢f,Hf¢f>f )

which is bounded from above by

— 81026 (Yet, Ther)er + €5in b (g, Ter)er +sin g b(e) — sin ¢ (Y, Hptpys) s .

The sum of the first two terms is negative, due to the assumption on e. Because of the non-
negativity of Hy, the last term is also negative. Thus we arrive at the assertion of the lemma.
We note that the upper bound b(e) sin ¢ is purely ¢-dependent, due to the restriction on € by
the values of ¢. e

Lemma 4.4 Let P, (i¢, A) = }7j(i¢)x,\e[0,m]+XAZPO. There exists a constant Ty, and a function

¢(A) with values in [0, 1], such that for all z € D(E;, &),

Il Bpyio,) (Her (i) + Ae ™ — 2) ||y, < () (51)
and c¢(A) = O(A™1) for A — oo.

Proof In the following, we drop the subscript H,,. By definition of B,(ig, A), the lhs of ( 51)
yields

Il By 0) (Het(i) + Ae™ = 2) || xaciorp]
+ || [Ha(ig) + A e~ — | XA>po -

For each A € [0, p), || Rp,0)(Hei(i9) + Ae™ — 2) ||=: cx(2) is bounded, because 2 ¢ D(E;, &)
is not in the spectrum of P;(ig) [Hei(6) + Xe~], and for each finite 2 po, || [Ho(ip) + Ae—i® —
z]™ ||=: ¢j(2) is bounded, due to the same reason. For large A, we use lemma 4.1 to derive
that

I [Hei (i) + Xe™ — 271 || < [dist(Num(He(ig) + Xe=*, 2))) 1 .

Lemma 4.2 implies that the rhs is bounded by [Asing — ¢ — 2]~ for some constant ¢, and
tends to zero like O(A™1) for A — co. Now we define ¢, := supzeD(Ej’%Q){c,\(z)} and ¢y :=
SUD.¢ p(m;,22){ch(2)} for all A € R*. The function e(A) = CAX€[0,00] T CA\X2>p, Satisfies the

assertion of the lemma, and we set Ty := supy{c(A)}. o
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Lemma 4.5 For all z € D(E;, ), | Rpyig)(Ho(i¢) — 2) || < Ty holds.

Proof Let d@, be the spectral measure on H; associated to the photon Hamiltonian H 7
Spectral decomposition of H 7 yields

Reio(Ho(i6) = 2) = [ Rpon(Halid) +2e™ — 2) @ dQs
where P,(ig, \) := P;(i)xre0,00] + Xazpo- This expression is bounded from above by
supxzo || Rp, (g2 (Her(i9) + Ae™ — 2) |Ing,,
which is smaller than I';, due to lemma 4.4. This concludes the proof. e

Lemma 4.6 Lete < % and b(e) be the constants specified in lemma 4.2. Then, the inequality

: 2[b(e
I Hot = 0l e < 21 [Ha(i6) = we 28l g, + 2O
holds for all v € Hey and all w € C.

Proof In the following, we drop the subscripts H,;. Using Hy(id) = e 2T + ¢ %V and
lemma 4.2, we obtain the bound

HT+V —wlp [ <[ [T+ eV —wly | +[1-e?| | Vo , (53)
where T' = —A, is the kinetic energy operator on Hei- Due to ( 49), we find the inequality
IVH < el [T+eV —wl || +€ | Vi || +[ble) + elwl] | % || ,

which we solve for || V4 ||. Inserting the resulting estimate for | V3 || in ( 53) yields

1 . : 2[b
O e T ] - LCR LY

where we have used that |1 — ¢*®| < 2. Since e X < 2fore < %, we arrive at the assertion of
the lemma. e

Lemma 4.7 Let ¢ € R satisfy ¢ < Ey. Then there is a constant L., such that for all z €
D(Ejv pQ_o))

” [HO i C]Rpo(itb)(HO(iQS) = Z) “ S Fc ; (54)
I Rpyisy (Ho(ig) — 2)[Ho — ] || < T, (55)

and
Il [Ho — €)% R, gy (Ho(ig) — 2)[H(0) — ] ¥ ||< 2T . (56)
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Proof We begin with the proof of ( 54). ( 55) is proved exactly in the same way. Applying
lemma 4.6, and using spectral decomposition of the photon Hamiltonian, the lhs of ( 54) is
bounded from above by

SUpL Il [Her(i6) + ™[\ — I Rp, 39,0y (Ha(6) + Ae™ — 2) ||,

EUGRILEL

where P,(i, \) := Pj(z’gb)x,\e[o,po] + Xa>p,- Due to lemma 4.4, this expression is smaller than

I Rpyip3) (He (i) + A — 2) ., },

2 + ili}g{ (1e*®[A = ¢] + Xe® — z| + 20(e) ;-_el;\ =l )-e(N) }

The term in brackets diverges like O(X) for A — o0, but ¢()) converges to zero like o™,
Thus, the supremum s(z) exists for all 2z € D(Ej, %), and the constant T, := sup,{s(z)}
satisfies ( 54).

"To prove ( 56), we use the spectral decomposition of the undilated operators on the lhs. Let
dQ» be the spectral measure associated to Hy, and let dP, be the spectral measure defined by
He. For notational convenience, we write Po(ig)[Ho(i¢) — 2™t = [K()) ® dQ). The lhs of
(156) is then given by

I / [t+ X~ 3t + A — 3B K(M\)dPy © dQ, |

V+A—c
=l /tZt’ZEo \/t_:dpt[t + A= K(N)dPy ® dQ,
t+A—c
TR vl P tl = P/ .
+/t'2t2Eo \/;r:d K[+ X~ JdPy @ dQ, |

Now we use the identity dP,[t + \ — ¢| = dP[Hy + )\ — ¢| and find the upper bound

'+X—c
———— || [Ha+ 2 - K
iglg{tzst}lzp% t 1A —c I Ha+ A= dK() |,

t+A—-c
* oS Vra e I KO Ha 42—l e, }

which is smaller than 2T,, due to (54) and ( 55). o
Lemma 4.8 Letc € R satisfy ¢ < Eq. Then, there is a constant I',, such that

I (Ho — 2 [Ho(ig) — ' || < T[By— o (57)
I Ho(i¢) —c] ' [Ho—c]? || < DEy— o} (58)

Proof The argument is the same as the one used to prove ( 56). The lhs of ( 57) is bounded

sup || ton[He,(z'(p) +A—d Yt + A= o2 [H, + A~ 4P, o,
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which is smaller than SUPes o[t + A — 72 || [Ho(i¢) — ]~ [H, — c] ||. One can show that
| [Ho(i¢) — ] [Hy — c] |I< I, for some constant I, in the same way as in lemma 4.7. The
same applies to ( 58). This concludes the proof. e

Lemma 4.9 Let c € R satisfy c < E,. Then, there is a constant TW™) which, satisfies

I [Ho — ] 7'W,(ig) || < gr™,
| Wo(ig)[Ho — 71 || < gT(™)

and

I [Ho — ]~ W,(i¢)[H(0) - o] % ||< g™ |

The proof will be given after lemma, 4.19, among a series of other lemmata, that require the
Same argumentation technique.

Lemma 4.10 Letc € R satisfy ¢ < Ey. Then, the following bounds are satisfied.

I [Ho — cI~2W,(ig) Po(io) | < gT™)T [, — o2 (E; — 7, (59)
I Po(ig)Wy(ig)[Ho — ]2 || < oT™IIY[E, — o3 [E; —dL . (60)

Proof Both inequalities are proved in the same way. The lhs of ( 59) is bounded by

I (Ho = ™4 Wy (i) Ho — o] || - | [Ho — ]} [Hoig) — o | -
I [Ho(ig) — ] Po(ig)) | ,
which is smaller than gI'(") (B — ], due to lemmata 4.8 and 4.9 It is straightforward to
show that || [Hy(i¢) — 1Ry (ig) ||< [Ej—c]™L e
Using these lemmata, it is now casy to prove that the assumptions ( 46) hold, and that

the Feshbach map is thus defined for » € D(E;, 2). We will use the second resolvent identity

repeatedly in the following. Let A and B be operators on H, such that the products AB and
BA are well-defined. Then, one has the second resolvent identity

[A+B]™ = A4 A-'BlA4 B+t
= A'+[A+B]"'BA!,

We can now show that

Lemma 4.11 Let c € R satisfy ¢ < Ey, and let z € D(E;, £). Moreover, let the coupling

constant g satisfy g < [[")T.]~1. Then, one has the bound

I Beyig) (Hy(i¢) = 2) | < Ty[1 — gT™Ip,]-1 |
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Proof Due to the second resolvent identity, one finds

| Rpig) (Hy (i) — 2) || < || Rpyigy (Ho(ig) — 2) ||
+ || Rpyip)(Hy (i) — Z)Po(i¢)Wg(ic/’)Po(id’)RPo(w)(Ho(i¢) -2) |,

which is bounded by
D1+ || Reyiig) (Hy (i) — 2) || - || Wy (ig)[Ho — o™ | -
I {Ho — c][Ho(ig) — 27 |,

due to lemma 4.5, and where ¢ € R and ¢ < Ey. Using lemmata 4.7 and 4.9, we obtain the
bound

” Rﬁo(i¢)(Hg(i¢) =%) ” <I'i+ gI‘gW)FC I po(i¢)[Hg(i¢) = z]—l “ .

The assertion of the lemma follows. e
The assumptions ( 46) can now be verified.

Proposition 1 Letce R satisfy ¢ < Ey, and let z € D(E;, &). Furthermore, let the coupling
constant g satisfy g < [[W)T]~1. Then, one has the bounds

I Po(i¢)Wg(i¢)Po(i¢)Rﬁo(i¢)(Hg(w) -8l < Ui~ arr]t,

| Revioy (Ho(i9) — 2) Po(id) W, (i9) Poig) | < gL, (1 — grIT -1

Proof Both inequalities are proved in the same way. By use of the second resolvent identity,
we obtain

I Po(id) Wy (i¢) Po(ih) R, iy (Hy (i) — 2) || <
| Po(id) Wy (i) Po(ich) R, gy (Ho (i) — 2) |
+ || Po(id)Wo (i) Po (i) Ry igy (Hy (i) — 2) || -
| Wy(id) Po(ih) R, iy (Ho(ih) — 2) ||

For ¢ € R and ¢ < E,;, we have that

| Wo (i) Po(i) Ry (igy (Ho(i) — 2) ||< || W, (i) [Ho — -
| [Ho — ¢]Rpyigy (Ho (i) — 2) ||,

which is smaller than gI’ ,(:W)I"c, due to lemmata 4.7 and 4.9. Hence, we obtain

| Po(i) Wy (i) Po (i) Ry ig) (Hy (i) — 2) || < gTOVIT,
+9TT || Po(ig)W, (i) Po(id) Ry iy (B, (i) — 2) ||,

and the assertion of the proposition follows immediately. o
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Spectrum of the Feshbach map

We will now investigate the spectrum of the Feshbach map, which is in our case given by

Frotio)(Hy(i9) = 2) = Po(i) ® xt,<po[E; — 2 + e Hy] (61)
+ 9B (ig)Wi(ig) Po(ig) + 9° Po(id)Wa(igp) Py (i)
= Po(ig)Wy (i) Po(id) Rp, gy (Hy (i) — 2) Py(ich O)Wo(id) Po(igp) .

The last term in (61) can be decomposed into a sum of two terms 3 + ¥, by use of the second
resolvent identity, where

21(2) := Py(ig)W, (Z¢)P0(Z¢)RPO(2¢) (Ho(ip) — 2) By(ip) W, 4(i®) Po(ig) ,
and
Ya(2) := By(ig) W, (i) Po(i6) Rp, iy (Ho(ip) — z)Po(ig) W, o(18) Rp, iy (H, (igp) — 2)Wy(i¢) Py (i) .

We will now show that ¥5(2) is very small.

Lemma 4.12 Let z € D(E;,2), and let c € R satisfy ¢ < Ey. Then,

I 1Fo = I Po(ie) Rpy o (Hy (i) = 2) Polid)[ Bl — o} || < 201 — 2gT D001 (g
Proof By use of the second resolvent identity, the lhs of ( 62) is bounded by
Il [Ho — ]? P, <z¢)Rpo<z¢><Ho(z¢> = 2)Po(ig)[Ho — J? || +

I [Ho — ]2 P Po(i6) Ry igy (Ho i) — 2)Po(i)[Ho — ] || -
I [Ho — ]2 W, (ig) [H, — A7 ||| [Ho - oz P Fo(id) Rpyig) (Hy (i) — 2) By (i) [ Hy — dJz ||,

which is smaller than
20 + 2gT.TM™) || [Hy — c]%Po(m)Rpow) (Hy(i¢)) Po(ig)[Ho — €7 ||,

due to lemmata 4.7 and 4.9. The assertion of the lemma, follows. e

Lemma 4.13 Let z € D(E;, ). Then, || So(2) ||= O(g?).

Proof We introduce an auxiliary operator [Hy — ¢], with ¢ € R, and ¢ < Eo. Then, || $5(2) ||
is bounded by

Il Po(i)Wy(igh)[Ho — ¢] =% || - || [Ho — C]2P0(2¢)RP0(1¢ (Ho(ig) — 2) Py (igh)[Ho — C]2 [l -
Il [Ho — ]~ 2 W, (ig)[H, — 7z |-
| [Ho — |7 Po(i¢) Ry iy (H, (ip) — 2)Po(ig)[Ho — c]? || - || [Ho — C]_5W9(1¢)P0(Z¢) I

The assertion of the lemma follows from lemmata, 4.8, 4.9, and 4.12. e
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We further decompose ¥1(2) into a dominant and a small term, ¥ (z) = %y (2) + X12(2),
where

Zu(2) == g Py(ig)W; (i) Po (i) Ry i) (Ho (ih) — 2) Po(i) Wi (i) Po(ih)

and

Zia(2) == ) ng'Po(in))Wz(ifﬁ)Po(i(ﬁ)RPo(w)(Ho(i@—z)Po(i¢)m'(i¢)Po(i¢)-

140>3
Lemma 4.14 Let z € D(E;, ). Then, || £12(2) ||= O(g®).

Proof We introduce an auxiliary operator [Hy — ¢], with ¢ € R, and ¢ < E,. The expression
in the sum in 212(2) is bounded by

| Foli@)Wi(i6){Ho = c]% || - || [Ho — oI} Po(i) Ry i (Hli6) — 2) Po(i)[ o — i |
I [Ho — ¢~ 2 W (i) Po(ih) ||

and is of order O(1 = g°), which follows from lemmata 4.9 and 4.10. e
We will now show that the term Fo(ig)W, (i) Py (i) can also be made small. The following
two lemmata will be used repeatedly in what follows.

Lemma 4.15 (Pull-through formula) Let F : R* — C be 4 borel Junction with Flr] =
O(1+7). Then, F[H f] is defined on the domain of Hy by its spectral decomposition, and the

following intertwining relations hold

-,

FlHfa!'(k) = ot(B)F[H; +w(R)],
a(k)F[Hy] = F[H; +w(k)a(F) .

Proof The assertions follow from FlHf] T, at(k)Q = FITi T, at(R)Q. o

= l=l

Lemma 4.16 Let 1) € Hy, and f € Cy(R?). Then, the following bounds hold.

LD Iy < Nl £ llall B 1, (63)
1af 0 Wy < N8 £ leall B} I, + 1) 2l 0 12, (64)

Proof In the following, we will omit the integration variables and the subscripts H;. Due to
the Cauchy-Schwarz theorem, we have

latw i i atsyo i< (JU0)° (o pa i)}
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We further decompose 21(#) into a dominant and a small term, ¥1(z) = $11(2) + T1a(2),
where

Z1(z) == ¢*Py(ig) Wy (W)Rﬁo(w)(HO(iQS))WI (i9) Po(igp) |

and

Yig() = ¥ g‘“’Po(z‘czs)vmz'as)Rpo(i@(Ho(z'qzs))m(w)Po(w) .

I4+1>3
Lemma 4.14 Let z € D(E,, ). Then, || 15(2) ||= O(g?).

Proof We introduce an auxiliary operator [Ho — ¢], with ¢ € R, and ¢ < E,. The expression
in the sum in 5(z) is bounded by

I Po(ig)Wi(id)[Ho — ] % || - | [Hp — c]%Rpo(id,)(Ho(z’qS))[HO —dz -
Il 1Ho — "= Wi (i) Po(ig) ||,

and is of order O(1 = ¢°), which follows from lemmata 4.9 and 4.10. e
We will now show that the term Fo(id)Wy(i¢) Po(igp) can also be made small. The following
two lemmata will be used repeatedly in what follows.

Lemma 4.15 (Pull-through formula) Let F : R* — C be g borel function with F[r] =
O(1+7). Then, F[H{] is defined on the domain of Hy by its spectral decomposition, and the
following intertwining relations hold

FlHfla'(k) = of(K)F[H; +w(F)],
a(k)F[Hy] = F[H; +w()]a(F) .
Proof The assertions follow from FlHf T, ot (k) = F T, at (k)0 o
Lemma 4.16 Let ¢ € Hy, and f € Cy(R3). Then, the following bounds hold.
a0 Iy < Nlw™2 £ all B |1, (63)
la (1, < llw™ f s HEY I3, + || £ 112:]] [ (64)

Proof In the following, we will omit the integration variables and the subscripts H;. Due to
the Cauchy-Schwarz theorem, we have

la(rye 1< [ 1A a(w < ( i 'fT') (folasr),
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which implies ( 63), since
@ llathw IP= , Hy)
( 64) is obtained from

Nal()= [ [ Fo)£®1ae)al®) = [ [ 5o s ket (k)ao) + [P,

and from using that

. 2 2
J [0 @10.awae) < (] 16 ot 1)’ < [ 24y 1.
Lemma 4.17 Let 8 and T (B) be the constants specified in hypothesis 1. Then,

I 9° Po(ig) W (i) Po(ig) [|< 3920t T(8)2 (65)

Proof Po(ip)Wa (i) Py is a sum of three contributions which have to be estimated separately.
However, the estimates all have the same structure, and we demonstrate the proof for the
term [ d3kd3k' G (k, ) ® at(k)a(F'). Let ¢ and ¢ be arbitrary vectors in H. Then, due to
hypothesis 1, we get

(B9, | R R G (R, R) @ ol (Ba(®) By(ig) )
< [ @RER IEIE) | aB)BuGia)C | a®)Br(ids |
This expression gives the estimate

I a()Po(ig)¢ || 1] a(J) Po(ig)p ||<
10 2 X0 (22 | L ® B} Po(ig)c || 1 ® H? Ry(ig)y ||,

due to lemma 4.16. By definition, I(B) =Il [1 + w=~P]2. || 2. Hence, we find

A g
™%X llz2< sup w31+ 1-0]41(3) < hr(g)

w=po

1
Furthermore, || 1, ® H FR(i9)Y ||I< p2 | % ||, and the same holds for ¢. This concludes the
proof. e

Lemma 4.18 Let 3 and ['(B) be the constants specified in hypothesis 1. Then,

| 9P (@)W (i) Po(ig) 1< 2900 ()
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Proof The interaction term W1 consists of two parts which can be estimated in the same way.
We only demonstrate the proof for i d3kG'((,’1¢ ) (k) ® a(k). For the expression

| 9Fo (i)W (ig) Po(igp)ep ||°=
(| PEGEPR) © atByPlig)w, [ S 8 ®) © o) y(isy)
we find the upper bound p3+? L(B)? || ¢ ||? from lemma 4.17, which concludes the proof. e
We see that the term Fo(ig)W, (i) Po(id) can be made small by choosing a small cutoff £0-
This cutoff-dependency originates from the presence of creation and annihilation operators in
the complex dilated interaction Hamiltonian Wq(i¢). There remains a last contribution Y11(2)

to the Feshbach map which we have not estimated yet. By use of the pull-through formula, it
obtains the form

Xu(z) = i (2) + Z112(2) ,

where

Yii(z) = /d31;d3/;' Py(ig)[Gly ® L1Rpy 1y (w(k)) G © 1] Po(ig) ,
and where X;15(2) is given by

[ &R Rig) 6 o o' (k)al (F")] R, 1, (w(R)) G ® 1] Py i)

+ [ CRER RGIGE © 1,180, 1, D) © alBa(@ )i

+ / CEdF Po(i9)[GSY ® o ()| Rp, 1, (0)[GLY & a(R)| Po(ig)

+ [ CRER PGS © ol (F)Rp, iy (wlF) + w(F [0 & a(B)]Py(ig)
For notational convenience, we have introduced the operator

Ri o () =P (i6) Ho(ig) + e~ — o)1

where B¢ (i¢) := 1 — Fy'(i¢) with PY (i) := P;(i6) ® XH, +w<p,- One observes that all terms in
2112(2) include creation and annihilation operators. Consequently, one can make them small
by a suitable choice of po. We note that the cutoff po has been introduced as an auxiliary
parameter for the proof. For our intention to study the spectrum of the Feshbach map in a
£-ball around E;, we are free to minimize po- However, if p, is too small, we will only find

an estimate on the spread of the resolvent set of H,(i¢) in the vicinity of E;, but not on the
location of the spectrum.

Lemma 4.19 Let 8 and T (B) be the constants specified in hypothesis 1, and let ¢ € R, satisfy
¢ < Ey. Then, there is a constant Ye, such that

I Z112(2) I 8% LT (8)2[Bo — ¢] 3 pi+8 |
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Proof ¥,15(2) consists of four terms which have to be estimated separately, but in the same
way. We will only demonstrate the proof for the term which contains the operator a(k)a(k')
on Fock space. Let ¢ € R satisfy ¢ < Ey. Then, there is a constant Ye, Such that
1
=4+ 13 [Hy — ] |< 42 .

This can easily be shown with the spectral theorem, since both operators in question are self-
adjoint. From hypothesis 1, we therefore find that

Il [Ho — =2 GEA(B)[Ho — o]% ||< voJ (R

)
for m+n = 1. We denote the term in Y112(2) proportional to a(E)a(E’ ) by Tyq. Then, we have
that

| Toat IS % | @REE TEIR) | (Ho — o Ry s (B Ho — o]} |
“ lel ® G(E)Q(E,)XHJ:SPOQ/) “ :

We introduce the operator Rp, a1, (w(k), A) on H,; by the spectral decomposition Rp, m, (w(E)) =
J Rpy 1y (w(k), \) ® dQ), where dQ» is the spectral measure associated to H f- The term ||
[Ho — C]%RPQ,HO (w(k))[Ho — c]# || is then identical to

%= ot ;
e / udBRﬁo,Ho(w(ls), N)[Ho + X — |dP,
320~ H22Bo (¢ A — ¢]t

\dp /\ = P k dP/
+/t2t’2Eo [t+X—ds HHo + 2 = g g (w(RAPy |
which is bounded by

28Up[Bo + A = c] ™% || [Hot + A — ] Ry gy (w(F), A) |

-, —,

<2[Ey— (2 sup I [Het + A + w(k) — ] R, g, (w(B), A) || -

HHet + A+ w(k) = o] [Hy + 2= ] |
By definition, we have that Rp,igy(Ho (i) = Rp, 1,(0). R, g, (w(F), A) differs from Rp, 1, (0,0)
only by the substitution A — ) + w(k) of the photon variable. Hence we obtain that
SUP || [Het + A+ w(k) ~ | Rp, g, (w(F), ) |

= sup || [He + X~ c|Rp, 5, (0, ) ||
A>w(k)

s i‘ilg | [Het + X — c]Rp, (0, A) = L.
Furthermore, sup,., || [He + A + w(k) — | [Ha + XA = ¢] || is bounded by 1. We summarize
that
< 2%LelBo — % || 1 ® a(J)a(J)xm o0t |
< 20Tl Bo = o || 0™ X [l 1 @ Hyxory oot |
< 2 LT B [Bo— 305" |y | .

| Taat ||
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We will now give the proof of lemma 4.9, which is much in the same line as the proofs of the
last three lemmata.

Proof of lemma 4.9 We will only demonstrate the proof of the boundedness of the expression
| [Ho — c]_%Wg(iqﬁ)[Ho —¢]"% ||. The other proofs are almost identical. ¢ € R satisfies ¢ < E.
We will consider W; and W, separately. For Wy, we only demonstrate the proof for the term
[ kG )(E) ® a(k). For ¢ € H, and by use of the pull-through formula, we estimate

| | @EH — G50 R){Ho + w(k) - 4 @ alRyp |
Using hypothesis 1 and || [-A + 1]3[H, — =i |I< 7«:%, we obtain the bound

el [ @ | Ho+ ()~ d | JB) @ aByy |

<%l [ @R B +w® -t I @aE |

This is the same as 7, || 14 ® a([Ey + w — c]=2J)% ||, which is smaller than

Ye il;%[Eo + w(E) - c]"%[l i w_l_ﬁ]—%w% L) ] -

This expression is bounded, as can be easily checked, and the first part of the proof is finished.
To prove that the term proportional to W, is bounded, we only demonstrate the argumentation
for [ d®k d®k' GSP (k, k' )®a(k)a(k’). By use of the pull-through formula, we find the expression

| | RER [Ho - d4GH ) Ho + w(B) +w(R) - o © aBla@)y |
which is bounded by
el [ @RS (B + () + w(®) - d 4 JEIF) © a(Bra@e || -

It is now straightforward to show that this expression is finite. e

Now we can extract the transition matrix 7T} from the term Y111(2). First, we partition
Y1(z) into X9, (2) + £¢,,(2), where the superscripts od and d stand for ”off-diagonal” and
"diagonal”. The contribution ©%,(2), given by

Sthz) = [ PRPGHIGE R © 1,][P(i0) Ha(id) 9 1,]
+e71a ® [Hy + w(R)]™ - (61 (F) © 11Py(i6) © xty<00

describes self-energy processes which involve intermediate states outside of the eigenspace
spanned by P;(i¢), whereas the contribution

() = [ @R IR G8)GE FIPi0)G5 ()P ig) @ 1)
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[e_i¢1el ® [Hf -+ w(k)] + E_] == Z]_IXHfSpoXHf+w(E)2po

describes self-energy processes that remain within this given eigenspace of H,, (i¢). We recall
that the transition matrix has the form

Tl = [ 4B [ d (Gro(Ftys iy <o Gro B ) — B, +E),
and define the N; x N; matrices
2/ = [ ERBa)GSPBIP9) - B, + (B G ()P0, <o
and
2" = [ K[ u(B] By i) GO (BP9 0 (B) Py i)
Lemma 4.20 The following estimates hold.
I2301(2) = 209 | = O(peg?)

I 28(2) = Z8P4 || = O(pfg?) o

The proof is very similar to the proofs given in the last four lemmata and can be found in [5].
We reverse the complex dilation in Z; (@) and Z (¢); to carry out the k integration, which yields

2% = [ @R GHCRIRIPi6) - By + () — 01 6Q BP0, <o,
and
7" = [ @) BGo)CS RP 8GR Py ig)

We observe that Z; (O _ = Re[Z; © %, and that I m[Z; (©) 4 = T;, where we have used the notation
Re[Z]:=1[Z+ 2z *] and [ m[Z] = 5[Z — Z*]. Hence we conclude that the Lamb shift and the
inverse hfe times of resonances are given by

T = ¢Im[Z" = g°T;

By hypothesis 2, T'; is self-adjoint and positive definite. Hence, there is a constant 7%;, such that
D2l =0 We apply complex dilation on these matrices, and obtain P; i(i9) AE; P; (i) and
P 3(16)T Py (i), respectively. We conclude the results of this section in the following theorem.

Thi. 2 Let 5 € D(E;, 2), and let 3 be the constant specified in hypothesis 1. Assume that
hypotheses 1 and 2 hold, and set py = ¢* 7 Consequently, the Feshbach map 1is given by

Troiio)(H(i¢) = 2) = Po(i9) By — 2 + [AE; — iT,] + e=%1,, Hy]Py(ig)
+0(g**7%7),

which is invertible on O' := D(E;, )N {Im(z) > —g2y, + O(g”%)}.
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8
Proof We have to prove the error estimate of order 0(g2+m). Hence we have to consider
all error estimates from lemma 4.17 to lemma 4.20. The two largest terms stem from lemma,

148
4.18, which is of order O(gpy? ), and from lemma 4.20, which is of order O(g2p8 ). For the
2
choice py = ¢g*~ +#, one can easily verify that the largest error among all small terms is of order

O(g2+%). This concludes the proof. e
As a corollary, we have the following theorem.

Thm. 3 Let z € D(E;, &), and let B be the constant specified in hypothesis 1. Assume that
hypotheses 1 and 2 hold, and define the region

O :=[E; — D, E; + D] - i, + iR+ + O(g**7%5)

where D is smaller than [1 — O(g?)] times the distance between Ej and the closest neighboring

eigenvalue. Then, there exists an angle ¢ such that Hy(ig) is invertible on ©.

Proof By suitable choice of ¢, the spectrum of Hy(i¢) does not intersect @ \ O'. Hence,
[z — Ho(i$)]™* is bounded for all z € O \ O'. By an argument similar to the proof of lemma
4.5, one can use the information on Num(Hy(i¢)) from lemma 4.3 to show that this norm
is bounded by a constant which is independent of 2. Therefore, it is possible to prove the
boundedness of [z — H,y(i$)]™* on O\ @' by use of the second resolvent formula, as in the proof
of lemma 4.11. From theorem 1 and 2, we conclude that H,(i¢) is invertible on (', Hence, the
assertion of the theorem follows. e

9 Decay of resonances

In this section, we will prove the exponential decay of eigenstates of the unperturbed Hamilto-
nian H,, if the interaction with the radiation field is turned on. We consider the time evolution
of the expectation value

(i, ™ Hogp) . (66)

We have ¢ = Y @ Qf € H, where 2¢ is the Fock vacuum. ¥; is an eigenvector of H,
which corresponds to the eigenvalue E;. We denote the orthogonal projector on the eigenspace
associated to E; by Pj, and the projector P; ® Py ; by PBy. Py  1s the projector on the linear
subspace spanned by the Fock vacuum. Due to the self-adjointness of the Hamiltonian H,, we
can employ the spectral theorem to analyze ( 66). The spectral measure d Py associated to H,
can be represented by the resolvent in the following way:

(e oy = [ By, dPy) (67)
= P_I,% 2%” /dEe‘itE[(w, [E — e — Hy™ ) < (¥, [E + ie — Hg]"lw)] )

The integration contour encloses a thin strip I :== {2|Im(z) < €} which contains the real axis.
The resolvent Ry, (2) == [z — H,]"! is evaluated on the first Riemann sheet for both terms
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in the bracket. Since we know the approximate locations of the resonances next to E; from
section 4, we will deform the integration contour into their vicinity in the negative half-plane
on the second sheet of the Riemann surface. The factor e~F will then approximately generate
the e decay rate, where —I" is the imaginary part of the resonance next to E;, which lies
closest to the real axis. The first term in the brackets is evaluated below the real axis, hence it
will cause no difficulty if the integration path is deformed into C—. However, the second term
is evaluated in C*, and the deformed integration path crosses the real line, where Ry, (2) is
singular.

This problem can be solved by using dilation analyticity of H,. According to Balslev-Combes
theory, we start with

(W, B, (2)9) = (U (0), Ra, (0 (2)U (0)) , (68)

where U(6) is the unitary dilation operator for § € R, and where H,(0) := U (0)H,U(0)~. The
equality of the lhs and the rhs of ( 68) is due to the unitarity of U(6). We assume that the
vector 9 € H is dilation analytic, and that 2 lies in the upper half-plane, above the continuous
spectrum of H,. Since H, is dilation analytic, the rhs of ( 68) can be analytically continuated
to @ € V*, where V* ig a complex neighborhood of {0} which lies entirely in the upper half-
plane. Because the identity ( 68) holds for all real 0, it must also hold for all complex 0 € VT,
Consequently,

(U(id), Ru,ig) (2)U (ig)) (69)

with ¢ > 0, is an analytic continuation of the lhs of (68). From section 4, we know that ( 69)
can be continuated from z € C* to the part of the resolvent set of H,(i$) which lies in C~.
We define the deformed integration contour J U J by way of

J = R\{E;+[-D,D]}
I = el
Ji = E;—i(l-6)+[-D, D)
J< = E;+D—i[0,T -]
Jo = E;—D—i[o,T—§],

where ¢ is a small number which ensures that the integration path does not intersect the
spectrum of H,(i¢). The number D is chosen such that 2D is smaller than the spacing between
E; and the eigenvalue which lies closest to it. Note that the region enclosed by J and the real
axis is a subset of the region @ defined in theorem 3. ( 67) is then equal to

gl it ) ; ; :
lim — [ dee ({9, Ry, (2 — ie)) - ((ig), Ry, ig) (2 + i€)(ig))] (70)
We will first consider the contribution to ( 70) which stems from J|, given by
gk ol i ; . ; .
lm g7 [, 95710, Ray & = )4) = (0036, By (2 + (i) (71)
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where we have defined 9 (i¢) := U(i¢)%. The norm of this expression is bounded by

e—0 277

i o ., @I, Riry (= ) — (38, By + )i

< 0 supl| (), B = i) + (638, Rugyoe(z + ieW(ia)]. (72)

m ZGJ"

The norm of the resolvent in the first, undilated term can be estimated by the inverse imaginary
part of the variable z, which is simply |Im(z)|! = [[' = 6]~1. From theorem 3, it is known that
Hy(i¢) has no singularities on J, hence there exists a constant 71(6), such that for all 2 € Jj,

I Beryigy (2) 1< %1(6) (73)
and a constant v, , such that for all z € Jeor J%
I Rety(ig) (2) 1< 71 - (74)
We conclude that ( 72) is bounded by
T8 20— 671 4y (5)].
In order to study the contributions from the rest of J and from J, we prove two easy lemmata.
Lemma 5.1 There is a constant Ye, Such that

IWedb Il 1| Wy(id)p(ig) | < gve . (75)

Proof This follows from

I Wo(id)sh (i) I<I| Wo(ig)[Ho(id) — ™2 || - || [Ho(id) — e (igb) ||
< gT(E; — ] || [Ho — d][Ho(ig) — ] ||,

where lemma 4.9 has been used, and where ¢ is a real number which satisfies ¢ < Fy. One
can show that the norm on the second line is bounded with the argumentation used to prove
lemma, 4.7. Obviously, this is also valid for 0=0.e

Lemma 5.2 For all |¢| < ¢o, and all z € p(Ho(id)), the following identity holds:
(0(i9), Rayi) ()% (i9)) = [z — ;]
+[z = Bj]72(4(i), Wy (i) R, (ig) (2) W (id)2) (i) .

Proof By use of the second resolvent identity, the lhs of this expression is given by

(W(19), Rary(ig) (2)9(i9)) = [z = Bj]™ + [z — By] (s (i), W, (i) (igh))
+[z — Bj] 724 (i8), Wy (i) Rir, iy (2) W, (i) (i)
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The term (¢ (i¢), Wy (i¢)y(i¢)) vanishes, due to the following reason: Wj(i¢) acts on Hy by
way of a single creation or annihilation operator, which results in zero expectation value for any
state with a definite number of photons. Wa(i¢) is normal ordered, hence it has no expectation
value with respect to 9 = ¥; ® Qf, because the photon part of 9 is the Fock vacuum. Note
that these arguments do not touch the analyticity properties of the given operators. Hence,
the assertion holds independently of the sign of ¢. e

We will now estimate the contributions from the parts J< and J, of the integration contour.
Both are equally analyzed, and we will restrict our considerations only on J_. Hence, we will
study

e e ; . . 1
i sz . 427100, Rty (= i000) — ((18), Ry (= + i€} i)] (76)
We apply lemma 5.2 to both terms in the integrand, and obtain
: 1 —itz gy, 4D 108 & e =1
lim = /J< dze™"*{[z — ic — E}] [z +ie— E;)71)
| i , ®: :
-+ ll_r% o /J( dze ™" {[z — je — E;]7%(y, WyRwy, (2 — ie)W, 1)

2+ e~ B0 (i0), Wy (i6) Raty i) (2 + i)W, (i)op (i) }

The first integral vanishes, since there are no singularities of the function » — E; on J.. The
norm of the complex dilated term in the second integral is bounded by ¢°D~242y, which
follows from lemma 5.1 and (74).

The norm of (4, WyRp, (2 — ie)W,4) remains to be estimated. Due to the self-adjointness
of Wy, it equals

(Wy, Ry, (z —ie)Wyy) . (77)

Again, we use dilatation analyticity of H,, but this time, we consider the analytic continuation
of Hy(—i¢) into the upper half-plane, for negative angles —¢ (¢ > 0). ( 77) is analytically
continuated to

(Wy(—i8)y(~i9), Rat,(—ig (2 — i€)Wy(—ig)p(—ig)) .

From [5] and section 4, we know that the spectrum of Hy has no embedded eigenvalues on the
interval [Ey, ), where ¥ is the smallest threshold. The spectrum of H 9(—i¢) therefore consists
of a branch of continuous spectrum which emanates from Ey, and which is rotated by ¢ into
the upper half-plane. Other branches of continuous spectrum emanate at ¥ and at points with
larger real parts than X. Thus, J. and Js do not intersect the spectrum of Hy(—i¢), and
consequently, there is a constant 7., such that

I [z = Hy(=ig)]* [|< s
for all z in some neighborhood of J_ and J5. We find the estimate

| (Wo(—id)y(—i), Ry, (_igy (2 — ie)Wy(—ig)p(—ig)) | <
N1 Wy (=ig)y(~ig), W, (—id)p(—ig))
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for all z € J. and Js. (Wy(—ig)y(—ig), W, ( i¢)p(—i¢)) is the (constant) analytic continua-
tion of (W1, Wyep), which is bounded by g%y2, according to lemma 5.1. We conclude that

sup |[z — Ej] (W, Ru, (2 — i) Wh) | < g*y2n. D72

z€J<,Js

Therefore, the norm of the integrand of ( 76) is of order O(g?). The length of the paths J. and

Js is given by I' — 6, which is also of order O(g?), as known from theorems 2 and 3. The norm
of (76) is thus of order O(g*).

We will now estimate the contribution to ( 70), which stems from the integration on J,
given by

LE [ dee™((, R, (B ~ i€)p) — (4, Rar, (= + ie))]. (78)

e—0 2717

Using lemma 5.2, we obtain
hm—/dE ~WBH e B~ [B+e— B

+lim - [ ABe (B — ic — B0, Wy R, (B - ie)W,)
—[E + i€ — E|™*(), W,Rp, (E + ie) W)} .

The first integral vanishes, because the function [E — E;]~! has no singularity on J. Due to
the same reason, the second integral is identical to

hntl)Zim _dEe™"E[E — Ej]~ 2{(1,/1,W9RH9(E — ie) W)
— (%, WyRyg,(E +ie)Wyh)} .
We use the self-adjointness of the interaction Hamiltonian W, and arrive at
1 v !
iy > [ dBe 5B — BI{(Wyw, Ray (B = ie)Wy)
—(Wy¥, Ry, (E +ie)Wyi)}
which is just an alternative representation of
[ e E - B (W, dPsW,y)

where dPg is the spectral measure associated to Hy,. The norm of this expression can be
estimated by

sup e "F[E — Ej] 7| || Wy |1,
EeJ

which is smaller than g?y2D~2.
We summarize the results of this section in the following theorem.
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Thm. 4 Let ¢ = 9; ® Qs € H, where 7 18 the Fock vacuum, and where Y; is an eigenvector
of Hey which corresponds to the eigenvalue Ej. Let —T" be the imaginary part of the resonance
in the vicinity of E;, which lies closest to the real azis. For every 6 > 0, there exists a constant
C(8), such that

@, e o) < C(8) e + O(g?) .
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Spectral analysis of N-body Schrédinger operators by use of Balslev-Combes theory has
been subject to intensive study ever since the original paper [3] appeared.

Dilation of the radiation field Hamiltonian H s requires the choice of a one-photon basis
{fi} on Cy(R?) to represent Hy in terms of af(f;), a(f;)

Hy = 3 (fywh;) a (fa(f;) .

1’.7

Using (f;,wf;) = [d3k ﬁ(E)w(E) f;(k) and the usual definition of a*(f), it follows that

HY = 3 (fiwofy) al(falfy) |
1,7

where wy(k) = w(e~%k). For the dispersion relation w(k) = |k|, one finds that H}Q) =
e~’Hy. Note that since the modulus function |-] : R®* - R* is not analytic, the factor e~
must be extracted from [e"’/ZI before analytic continuation. The spectrum of H; consists
of a single eigenvalue {0} at the bottom of its continuous spectrum, corresponding to the
vacuum state 2y. There is no separation between the point spectrum and the continuous
spectrum of Hy, since photons are massless particles. For = i¢ ¢ C™", the continuous
spectrum of H)(ci‘f’) that emanates from {0} is rotated by ¢ into C~.

The spectrum of the complex dilated, free Hamiltonian HS(,ZZ’& thus consists of branches

of continuous spectrum of H }ieﬁ) , which emanate from each element of the spectrum of A Sd’) ,
from each threshold, and from each resonance, cf. the following figure.

E, E; ) 2Im(©)

We have introduced the interaction Hamiltonian W, at the end of section 1.2. The unitarily
dilated W(®) = g ® +9°Wi? is characterized by the coupling functions GO 1<m+n< 2,
which are defined by

WO = [EHGHR e d'(F) + CORF) ® a(f)]
W = [ @RERIGEF) © al (R)at (7 + GG () ® a(k)a(R)
+GQ(F) ® al (B)a().

We have G (k) = %G (€7k) for m+n = 1, and GO (k, k) = G n(e~k, e~0F') for
m+n = 2. Thus, the coupling functions are dilation analytic, and we choose § — i¢ € Ct,
The properties of the coupling functions are specified in the following hypothesis.
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