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Deep Learning Networks

DL network for supervised learning: Architecture inspired by brain
structure, as designed by nature.

Input layer Xo € RM*N
L hidden layers X(©) ¢ RMexN

Output layer X(tH1) ¢ R@xN

Outputs Y&t ¢ ROxN

Parametrized by weight matrices W, bias vectors by, £ =1,... L +1

Minimize cost function Cpr = || X(-+1) — Ye’(t||f:§v
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Definition of DL network

Output matrix

Y =, Y0l c RO*Q

where y; € R€ is the j-th output vector. Lin indep, invertible.
Training inputs: i-th belonging to y;.

XoJJERM , iE{l,...,Nj} R jG{l,...,Q}

Matrix of all training inputs belonging to y;

Matrix of all training inputs, N := EJQZI N;
Xo := [XO,l i 'XOJ .- 'XO’Q] e RMxN
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L hidden layers: For £ =1,..., L, recursively define
X0 = g(W, XV 4 B)) e RMxN
Weight matrices
W, € RMexMes
Bias vectors by € RMe,
By =[by--- by € RMexN
Activation function o (nonlinear !), acting component-wise
o RMMy RAM
A=laz] = [(aj)+]
via ramp function (ReLU)
(a)+ := max{0, a}



Terminal layer without activation function, M; 11 = Q,
XED = W x4 By e ROV

Weighted cost function

Q N;
e o013y <l
j=1 =

This is equivalent to Hilbert-Schmidt norm

C_/\/[(VV,, b L+1 Hx(L+1) YeXtHijzv

Yo = [Y1-- Yol e RN Y= [y y] e RON
Goal: Find cost minimizing weights, biases, to train DL network
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Gradient descent

Let § € RX enlist components of all weights W, and biases by:

L+1
K=> (MMe_1+ M), Mo=M
/=1

Let
xl0] = X"V e RO x(6] = (xal6], .. xw[6])T
Gradient descent method: Gradient flow of weights and biases
050(s) = —VeCIx[0(s)]] , 8(0) =0, € R¥.
Monotone decreasing
dsCIx[0(s)]] = —|VaClx[0(s ]]|RK <0,

C[x[0(s)]] > 0 bounded below = C, = lims_,o C[x[0(s)]] exists for
any orbit {6(s)|s € R}, and depends on the initial data 6.
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Challenges of gradient descent method

Problems: The cost always converges to a stationary value, but
not necessarily to the global minimum. Typically, there are many
(approximate) local minima trapping the orbit ("landscape"), and
identifying valid ones yielding a sufficiently well-trained DL network
relies on ad hoc methods getting flow unstuck from invalid ones.

In applications, 6, € RX often chosen at random.

e Underparametrized case: K < QN, gradient descent
generically can’t find global minimum.

e Overparametrized case: K > QN, typically used. Can get
global minimum if lucky.
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Construction of global minimizers in underparametrized DL

Joint work with Patricia Mufioz Ewald, 2023.
Assume M = M, = Q.

Define the average of all training inputs belonging to output y;,

N.
1 J
XOJ::W E Xo,_,",'ERQ
Ji=1
forj=1,...,Q, and

Xoj = [xoj %ol € RN Xo = [Xo1-- Xo,] € ROV

X = [%o1 - Xo,q] € RV?
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We also define deviations from X belonging to output y;

Axoj,i 7= Xo,ji = X0 -

AXoJ = [AXOJ'J <o AXO’J' it AXo’ijj] S RN
and total matrix of deviations

AXg = [AXp1 -+ AXpj - AXp ) € ROV
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Given W € GL(Q), b € R®?, and B = [b-- - b], define the
truncation map

: RON o RON
X = W lo(WX+B)-B),

TW,b

TW,b = a;v{b o0 o aw,p under affine map aw p : X — WX + B.

We say that 7y p is rank preserving with respect to X if both

rank(7w p(X)) = rank(X)

rank(mw (X)) = rank(X)

hold, and that it is rank reducing otherwise.

Thomas Chen Global cost minimization in Deep Learning



Proposition (C-Mufioz Ewald 2023)

Recursively, for £ =1,..., L,

X(e) = W, TWZ,bZ(X(z_l)) + By
= ... = w® Tm(aé(e)(X(o)) +B®

where (recursive structure similar to renormalization map in RG)

Two 0 (X0) = Ty w0 (Twe-1 pe-0 (- Twe pe (Twe s (X)) -+ +))
= TW(z)yb(z)(Tﬂ(z—n’g(z—n(Xo))

wO = W@ w®) | pO = (b p0)
wo = W,W_,--- Wy
pO . { Wo---Waby + -+ Wybey + by if £>2
by ifr=1.
BO = [p®...p0O] e RN,

Thomas Chen Global cost minimization in Deep Learning



Theorem (C-Mufioz Ewald 2023)

The weighted cost function satisfies the upper bound

min C W Wiy, bV, by
WO, Wi ,60 by A 2 b

< (1-— Gob2 D)l 2
< (1 Gdp) W{g'"(L)IIYA Iz,

(least square in W1, by +1) for a constant Co > 0, where

AP = (0 0 ) A 0 ()

and where

0p = sup | ((rww 5o (X0))"*) ATy o (x0.1.1))

J7

measures the signal to noise ratio of the truncated training input data.
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We note that AIIOI

e has the following geometric meaning. Let

Q Q
- Q — E o § _
r@.—{XER ‘X— IﬂonJ,IﬂJ'ZO, Iij—l}.
j=1 j=1

Simplex with barycentric coordinates x = (1, ...,kq)" € R?.
Any point x € R® can be represented in terms of

Q
_ —f[——] — Xred
X = RiXo,i = [X0,1 X0,QIk = Ag T R,
i=1

therefore,
r= (G
are the barycentric coordinates of x. This means that
AP = (X5 A X

is the representation of AXjp in barycentric coordinates !
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Strategy to find global cost minimum: Find w® | b 5o that

A = (T g OO Al o 060)) =

The training inputs belonging to y; are in é-ball centered at corner Xy of
simplex. Recursively map each of them to a point Xgj[1] on the
connecting line from Xy to center of simplex X, u; € Z C R.

Activation function o maps positive sector Rff to itself, and negative

sector R? to 0. Use W) to orient diagonal in Rf from Xg ¢ towards X,

and use b¥) to translate B5(Xp¢) into negative sector. Also, choose W/(*)

to change opening angle of Rff so that all other d-balls are not affected.
= iterate, each ¢ corresponds to one hidden layer.

Number of parameters: Q3 + Q2 < QN underparametrized.
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Theorem (C-Mufioz Ewald 2023)

The global minimum is attained, and is degenerate,

i 1w w (L) _
ﬂ(L),WLTlI,rib(L),bLHCN[_ yWig1, b7, by1] =0

The minimizers W1, p(b) [u] are explicit, p € I C R.
To match a test input x € R? to an output y; where j = j(x)

J(x)

argmin;| W,SLH)TE(*L)’Q(*L)[#] (x) + e — Yl

= argmin; d(Tﬂ(*L)’g(*L)[H](X) , Xojl10)
for the metric d : R® x R® — R on the input space, defined by
d(x,x) = |Y§) x|

where X§[u] = [ %01l - Xo.aliql] € GL(Q).

v
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Geometric structure of DL networks

Map w: {1,...,N} = {1,...,Q}: Input xj(o) assigned to output y(j).
Xw = (yw(l)a s 7yw(N))T € RNQ
Def: Comparison model, gradient flow with s € R,
1
Osx(s) = =ViClx(s)] , x(0) € R, with Clx] = Soilx —y, |°

Equivalent to

ou(x(s) ~y,) = —3(xls) )
= x(s)-y, = e 7(x(0)-y)
= Clx(s)] = e ¥C[x(0)].
Exponential convergence rates are uniform w.r.t. initial data.

x. = Jim x(5) =y,

unique global minimizer of the £2 cost, by convexity of C in x — Y.
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Vector § € RX of components of all weights W, and biases by,

L+1

K= Z(MzMZA + Mp)
=1

In the output layer, we define
xi10] = X e RO x[0] = (ald], ... xw[6])T € ROV
Then, £2 cost is
1 2
Clxlell = S5lx0] =y, [gan
Observe that with Jacobian matrix D[f] for x : RX — RV,

VeClx[0]] = DT[O]IVCx[e]] .

oxal0] . Oxlf]

Dlo] = [%[Q]} T c RONXK
B 90e ol .. Omld
1 K
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Therefore, gradient flow for 6(s) can be written as
9s6(s) = —DT[0(s)IVACIx[O(s)]] , 6(0) = b, € R,
Letting x(s) := x[0(s)], so that d;x(s) = —D[0(s)]0s0(s)
d:x(s) = —D[E(s)IDT[6(s)] VxCIx[(s)]] € R

Because rankDD T < min{K, QN}
= K > QN necessary for invertibility, overparametrized DL.
If invertible, DDV, = gradient w.r.t Riemannian metric (DDT)~1.

Metric (DDT)~! on ROV is source of complicated "energy landscape" !

Question: Does this make geometric sense 77
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Theorem (C 2023)

Assume the overparametrized case K > QN, and that
rank(D[4]) = QN
is maximal in the region § € U C RX. Let
Pen[D[d]] := DT[B)(DEIDT[g]) " € RV
Penrose inverse of D[0] for 0 € U, generalizes matrix inverse by way of

Pen[D[0]] D[] = P[0] , D[6]Pen[D[f]] = 1onxon

P = P2 = PT ¢ RK*K orthoprojector onto range of DT € RK*QN,
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Theorem (C 2023, continued)
If 0(s) € U is a solution of the modified gradient flow

0s6(s) = —Pen[D[6(s)]](Pen[D[O(s)]])" VoCIx[8(s)]]
then x(s) = x[0(s)] € ROV is equivalent to comparison model
dex(s) = —VxCx(s)] . x(0) = x[f] € R
In particular, along any orbit 0(s) € U, s € Ry,

im CIx(B(s)] =0 limxlo(s)] =, .

$§—00

at same uniform exponential convergence rates as in comparison model.
v
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Geometric meaning of modified gradient flow

General setting: M and N manifolds, k = dim(M) > n = dim(N\).
Riemannian structure (N, g) with metric g.

Smooth surjection f : M — N. Pullback map f*, pushforward map f,.
(M) vector fields (sections) V : M — TM.

V C TM pullback vector bundle £* TA/, with sections I'(V): For z € M,
fiber V, C T, M is spanned by f*w for w € Ty, V.

Define the pullback metric h on V by way of

h(V, W) =g(FV,EW) , for V,W e (V)
Define the gradient grad,, associated to (M, V), h) by way of
dF(V)=h(V,grad,F) , forall Vel (V)

any smooth F : M — R, with exterior derivative d.F.
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In local coordinates,
h(V, W) = go o DESDFS VEWP',
and for all V € [(V), with dF(V) = VB9, F,
VP95 F = goar DS DS VP (grad,, F)”
In our DL situation, M = RX, A/ = R so that k = K and n = QN.
f corresponds to x : RK — RV, 9 x[4)].

Pushforward £, with Jacobian matrix [Dfg'] = D[d] at § € R¥.

Fiber Vg of pullback vector bundle V is the range of DT[d)].
Riemannian structure on N' = ROV & Euclidean metric, 8a,of = Oa,a!

VTVeF = VT DT[0]D[0] grad,F
forall V = (V1,...,VK)T € range(DT[f]). Equivalent to
PlO]VoF = P[OIDT[0]D16] grad,

where P = P2 = PT ¢ RK*K orthoprojector onto range(DT).
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Applying the Penrose inverse of DT [6] from the left,
(Pen[DIg]]) T PI6]VoF = (Pen[DI6]))T Vo = Do) grad, F
subsequently applying the Penrose inverse of D[f] from the left,
grad,, F = Pen[D[¢]](Pen[D[d]])" Vo.F .

Pgrad,F = grad,F and Ptgrad,F = 0 = grad,F € I'(V) section of V
We conclude that, writing C[f] := C[x[6]] for the £2 cost function,

00(s) = —grad,C[0(s)]
If V non-integrable (non-holonomic), triple
(R¥,V, h)

defines a sub-Riemannian manifold with grad, on V.
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Thank you for your attention |
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