MATH 361K - HOMEWORK ASSIGNMENT 1

Due Thursday, Jan 29, 2009
Please write clearly, and staple your work !

1. Problems

Assume that we want to prove or disprove the statement " X implies Y " (abbreviated by " $X \Rightarrow Y$ "). Which of the following are correct?
(i) We can instead prove the statement "if Y is not satisfied, then X is also not satisfied". This implies " $X \Rightarrow Y$ ".
(ii) We can try to find an example where X does not imply Y. If we succeed, we can conclude that the statement " $X \Rightarrow Y$ " is wrong.
(iii) We can instead prove the statement "if X is not satisfied, then Y is also not satisfied". This implies " $X \Rightarrow Y$ ".

2. Problem

(a) Let A, B be sets. Prove that $A \Delta B=(A \cup B) \backslash(A \cap B)$.
(b) Let $A, B \subset U$ be sets. Prove that $C(A \cup B)=C(A) \cap C(B)$.

3. Problem

Let A and B be sets and assume that $f: A \rightarrow B$ is bijective.
(a) Prove that if A has cardinality n, then so does B.
(b) Is it possible that there exists a function $h: B \rightarrow A$ such that $f(h(b))=b$ for all $b \in B$, but $h(f(a)) \neq a$ for some $a \in A$? (You may use the fact that f^{-1} exists.)
(c) How many different bijections $f: A \rightarrow B$ exist if both A and B have cardinality n ?

4. Problem

Assume that $x, y \geq 0$ are real numbers. Prove by mathematical induction that for all $n \in \mathbb{N}$,

$$
\left(x^{n}+y^{n}\right)^{\frac{1}{n}} \leq x+y .
$$

5. Problem

Assume that $r_{1}, r_{2}, \ldots, r_{70000}$ is a list of 70000 real numbers, $0<r_{j}<1$, given in decimals. How would you use Cantor's diagonal procedure to easily find nine real numbers, also between 0 and 1 , that are not in this list?

