MATH 361K - HOMEWORK ASSIGNMENT 10

Due Thursday, April 23, 2009

Please write clearly, and staple your work !

1. Problem

Let $I \subseteq \mathbb{R}$ be an interval, and $f: I \to \mathbb{R}$ differentiable on I. Prove that if f' > 0 on I, then f is strictly increasing on I.

2. Problems

Use the mean value theorem to prove that $|\sin x - \sin y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

3. Problems

Give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1) but whose derivative is not bounded on (0, 1).

4. Problem

Use the mean value theorem to prove that $\frac{x-1}{x} < \ln x < x - 1$ for x > 1 (using that $(\ln x)' = \frac{1}{x}$ for x > 0).

5. Problem

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Show that if $\lim_{x\to a} f'(x) = A$, then f'(a) exists and equals A. (Use the definition of f'(a) and the mean value theorem.)