MATH 361K - HOMEWORK ASSIGNMENT 11

Due Tuesday, May 5, 2009

Please write clearly, and staple your work !

1. Problem

Consider the function $f(x)=\tan x=\frac{\sin x}{\cos x}$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(a) Determine $f^{\prime}(0)$, using the quotient rule for derivatives.

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{(\cos x)^{2}}=\frac{1}{(\cos x)^{2}} .
$$

Therefore, $f^{\prime}(0)=1$.
(b) Find a continuous function $\phi(x)$ with the property that $\phi(0)=f^{\prime}(0)$ (sorry, there was a misprint on the problem sheet) and $f(x)-f(y)=$ $\phi(x)(x-y)$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution: Because we want $\phi(0)=f^{\prime}(0)$, we need $y=0$. We may choose the function

$$
\phi(x)=\left\{\begin{array}{cl}
\frac{f(x)-f(0)}{x-0} & \text { if } x \neq 0 \\
f^{\prime}(0) & \text { if } x=0 .
\end{array}\right.
$$

For $x \neq 0$, this is continuous because $f(x)$ is continuous, and $\frac{1}{x}$ is continuous. In the limit $x \rightarrow 0$, we have that

$$
\lim _{x \rightarrow 0} \phi(x)=\lim _{x \rightarrow 0} \phi(x) \frac{f(x)-f(0)}{x-0}=f^{\prime}(x)=\phi(0) .
$$

That is, the limit of function values $\phi(x)$ as $x \rightarrow 0$ converges to the function value $\phi(0)$. Therefore, $\phi(x)$ is continuous also at $x=0$.

2. Problems

Determine the following limits using Bernoulli-de l'Hôpital.
(a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$.

Solution: Let $f(x)=\cos x-1$ and $g(x)=x^{2}$. Then, clearly, $f(0)=f^{\prime}(0)=0$ and $g(0)=g^{\prime}(0)=0$, and $f^{\prime \prime}(0)=-1$ and $g^{\prime \prime}(0)=1$. Accordingly,

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=-1 .
$$

(b) $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x^{2}+x+x^{10}}$.

Solution: Let $f(x)=\sin x$ and $g(x)=x^{2}+x+x^{10}$. Then, clearly, $f(0)=0$ and $g(0)=0$, and $f^{\prime}(0)=1$ and $g(0)=1$. Therefore,

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=1
$$

3. Problems

Use Taylor's theorem with $n=2$ to approximate e^{x} at $x=0$, and give an upper bound on the absolute value of the remainder $R_{2}(x)$ for $x \in(-1,1)$.

Solution: Let $f(x)=e^{x}$. Then, the degree 2 Taylor polynomial at $x=0$ is given by

$$
P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}=1+x+\frac{1}{2} x^{2}
$$

and the remainder term by

$$
R_{2}(x)=\frac{1}{3!} f^{\prime \prime \prime}(c) x^{3}
$$

for some $c \in(0, x)$. Since $f^{\prime \prime \prime}(c)=e^{c}$, we find for $c \in(-1,1)$ that $\left|f^{\prime \prime \prime}(c)\right| \leq e$. Thus, $\left|R_{2}(x)\right| \leq \frac{1}{3!} e=\frac{e}{6}$ for $|x|<1$.

4. Problem

Determine the derivative of $h(x)=\sin \left(e^{\cos x}\right)$ (use the chain rule twice).
We find

$$
h^{\prime}(x)=\left(\cos \left(e^{\cos x}\right)\right) e^{\cos x}(-\sin x) .
$$

