MATH 361K - HOMEWORK ASSIGNMENT 11

Due Tuesday, May 5, 2009

Please write clearly, and staple your work !

1. Problem

Consider the function $f(x) = \tan x = \frac{\sin x}{\cos x}$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

- (a) Determine f'(0), using the quotient rule for derivatives.
- (b) Find a continuous function $\phi(x)$ with the property that $\phi(0) = f'(0)$ and $f(x) - f(y) = \phi(x)(x - y)$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

2. Problems

Determine the following limits using Bernoulli-de l'Hôpital.

- (a) $\lim_{x\to 0} \frac{\cos x 1}{x^2}$. (b) $\lim_{x\to 0^+} \frac{\sin x}{x^2 + x + x^{10}}$.

3. Problems

Use Taylor's theorem with n = 2 to approximate e^x at x = 0, and give an upper bound on the absolute value of the remainder $R_2(x)$ for $x \in (-1, 1)$.

4. Problem

Determine the derivative of $h(x) = \sin(e^{\cos x})$ (use the chain rule twice).