MATH 361K – HOMEWORK ASSIGNMENT 2

Due Thursday, Feb 5, 2009

Please write clearly, and staple your work !

1. Problems

Assume that $S \subset \mathbb{R}$ is a bounded set. Then (please answer with proof):

(a) Assume that S is open. Is $\sup(S)$ an element of S or not?

- (b) Assume that S is closed. Is $\sup(S)$ an element of S or not?
- (c) Assume that $\sup(S) = \inf(S)$.
 - Is this possible if S is open ?
 - Is this possible if S is closed ?

2. Problem

Deduce from the Archimedean property of \mathbb{N} that $u := \inf\{\frac{1}{n^3} | n \in \mathbb{N}\} = 0$. (Hint: Prove that $0 \le u < \epsilon$ for any $\epsilon > 0$.)

3. Problem

Find

(a) $\sup\{1 - \frac{1}{n} | 1 \le n \le 10^4\}.$

- (b) Supremum and infimum of $\{1 \frac{1}{n} | n \in \mathbb{N}\}$.
- (c) $\inf\{a \in \mathbb{R} | \sup\{n^a | n \in \mathbb{N}\} = \infty\}$

4. Problem

Let $X = (x_n)$ denote a sequence in \mathbb{R} which converges to $x \in \mathbb{R}$.

- (a) State this fact using $V_{\epsilon}(x)$, the ϵ -neighborhood of x.
- (b) Prove that the sequence (x_n^2) converges to x^2 .

5. Problem

Determine

(a)
$$\lim_{n\to\infty} ne^{-n}$$

(b) $\lim_{n\to\infty} n \ln n$

(c) $\lim_{n\to\infty} \frac{1}{n} \ln n$