MATH 361K - REVIEW 2

Will not be graded, but will be discussed on Tue, April 14, in class.

1. Problem

(a) For which values of p does the series $\sum (\frac{1}{\sqrt{1+n}})^p$ converge/diverge ?

(b) For which values of p does the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converge/diverge ?

2. Problems

Let $A \subseteq \mathbb{R}$, and $c \in A$ a cluster point. Prove that the epsilon-delta definition of continuity and the sequential definition of continuity of f at c are equivalent.

3. Problems

Let $I = [a, b] \subset \mathbb{R}$ be a closed, bounded interval. Assume $f : [a, b] \to \mathbb{R}$ is increasing and bounded, and let $C \subset (a, b)$ denote the set of locations where f has a jump discontinuity.

(i) Prove that one can write $C = \{c_1, c_2, \ldots, c_j, \ldots\}$ where $j_f(c_i) \ge j_f(c_j)$ if i < j.

(ii) Prove that on every open interval $(c_j, c_{j'})$ between neighboring jump points, f is uniformly continuous.

(ii) Is it possible that f is uniformly continuous on all closed intervals $[c_j, c_{j'}]$ between neighboring jump points ?

4. Problem

Let $I = [a, b] \subset \mathbb{R}$ be a closed, bounded interval. Assume $f : [a, b] \to \mathbb{R}$ is a function. Moreover, assume that for every Cauchy sequence (x_n) in I, it follows that $(f(x_n))$ is also a Cauchy sequence. Prove that f is uniformly continuous on I.

5. Problem

Consider the function $g(x) = \sin \frac{1}{\sqrt{x}}$ for $x \in (0, 1)$. Prove that g is not uniformly continuous on (0, 1).