MATH 361K – REVIEW 3

Will not be graded, but will be discussed on Thu, May 7, in class.

1. PROBLEM

Assume that $f: I = (a, b) \rightarrow J = (c, d)$ is differentiable, and $f'(x) \neq 0$ for $x \in (a, b)$. Furthermore, assume that f is bijective and thus has an inverse, $f^{-1}: J \to I$. This means that $(f \circ f^{-1})(y) = y$ for all $y \in J$, and $(f^{-1} \circ f)(x) = x$ for all $x \in I$. Prove that $(f^{-1})'(y) = 1/f'(f^{-1}(y))$ for all $y \in J$, using the chain rule.

2. Problems

Assume that $f : [a, b] \to \mathbb{R}$ is continuous, and differentiable on (a, b). Assume that there exists exactly one point $c \in (a, b)$ where f'(c) = 0, and that f(c) > 0. Moreover, assume that f(a) = 0 = f(b). Determine the absolute maximum and absolute minimum of f on [a, b].

3. Problem

Assume that $f:(a,b) \to \mathbb{R}$ is differentiable on (a,b). Assume that there exists a continuous function $g: (a, b) \to \mathbb{R}$ such that f(x) - f(y) = g(x)(x-y)and g(y) = 2 - f'(y), for some $y \in (a, b)$. What can you say about f'(y)?

4. Problem

- (a) Prove that $0 \le \ln(1+x) \le x$ for 0 < x < 1.
- (b) Determine the Taylor remainder term $R_n(x)$ in

$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + R_n(x).$$

Find an upper bound on $|R_n(x)|$ for 0 < x < 0.1 and n = 5. (c) Prove that $x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$ for 0 < x < 1.

5. Problems

- (a) Find $(\frac{\sin x}{e^x})'$ and $\sin(e^{x^2})'$. (b) Find $\frac{d}{dx} \int_2^x \arctan(e^{\sin t}) dt$.