COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 1

Due Friday, January 25, 2013, at the beginning of class.

Please write clearly, and staple your work!

1. Problem

Assume that the power series $\sum_{j=0}^{\infty} a_j z^j$ has convergence radius $0 < R < \infty$.

- (a) Prove that the series converges uniformly to a continuous function f(z) on the disc D(0,r), for any 0 < r < R.
- (b) Taking termwise derivatives, prove that the series $\sum_{j=1}^{\infty} j a_j z^{j-1}$ has the same convergence radius R, and that it converges uniformly on D(0,r) to f'(z).

2. Problem

- (a) Prove that the exponential function e^z is entire (holomorphic on \mathbb{C}), with $(e^z)' = e^z$.
- (b) Let $\log(z)$ denote the branch of logarithm with branch cut at $L_{\theta} = \{re^{i\theta} \mid r \geq 0\}$, for some angle $\theta \in [0, 2\pi)$. Using (a), prove that log is holomorphic on $\mathbb{C} \setminus L_{\theta}$, with $(\log z)' = \frac{1}{z}$.

3. Problem

Consider the stereographic projection,

$$\Phi: (x, y, t) \mapsto \frac{x + iy}{1 - t},$$

for $x^2 + y^2 + t^2 = 1$, and $-1 \le t < 1$.

- (a) Prove that Φ defines a conformal map $S^2 \subset \mathbb{R}^3 \to \mathbb{C}_{\infty}$ (where $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$). (b) Define a metric on \mathbb{C}_{∞} by the Euclidean distance on $S^2 \subset \mathbb{R}^3$ as follows: For $z, w \in \mathbb{C}$, let $d(z, w) := |\Phi^{-1}(z) - \Phi^{-1}(w)|$. Show that

$$d(z,w) = \frac{2|z-w|}{\sqrt{(1+|z|^2)(1+|w|^2)}}.$$

1

(c) Prove that Φ maps circles on S^2 to circles or straight lines in \mathbb{C} , using (b).