COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 10

Due Friday, April 19, 2013, at the beginning of class.
Please write clearly, and staple your work!

1. Problem

Consider the hyperbolic plane, that is, the upper half plane \mathbb{H} endowed with the Poincaré metric, $d s^{2}=\frac{d \bar{z} d z}{(I m z)^{2}}$. The distance between any pair of points $z_{1}, z_{2} \in \mathbb{H}$ is obtained from minimizing the arc length,

$$
d\left(z_{1}, z_{2}\right)=\inf _{\gamma} \int_{0}^{1} \frac{|\dot{\gamma}(t)|}{\operatorname{Im}(\gamma(t))} d t
$$

where the infimum is taken over all C^{1}-curves $\gamma:[0,1] \rightarrow \mathbb{H}$ connecting z_{1}, z_{2} with $\gamma(0)=z_{1}$, $\gamma(1)=z_{2}$. Curves of minimal arc lengths are called geodesics.
(i) Prove that automorphisms of the hyperbolic plane are isometries. That is,

$$
d\left(T_{A}\left(z_{1}\right), T_{A}\left(z_{2}\right)\right)=d\left(z_{1}, z_{2}\right)
$$

for all Möbius transformations $T_{A}(z)=\frac{a z+b}{c z+d}$ with $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{PSL}(2, \mathbb{R})$.
Hint: Prove that the Poincaré metric is invariant under automorphisms of \mathbb{H}.
(ii) Prove that straight lines in \mathbb{H} perpendicular to the real line are geodesics.
(iii) Prove that half circles in \mathbb{H} with centers on the real line are geodesics. Moreover, prove that there are no other geodesics apart from those in (ii).

Hint: For the first part in (iii), consider the action of automorphisms of \mathbb{H} on the geodesics found in part (ii). For the second part in (iii), use the stereographic projection as an auxiliary tool.

2. Problem

Let $L:=\{m+i n \mid m, n \in \mathbb{Z}\}$, and $L^{*}:=L \backslash\{(0,0)\}$.
(i) Prove that

$$
f(z):=\frac{1}{z^{2}}+\sum_{\omega \in L^{*}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

defines a meromorphic function in \mathbb{C} satisfying $f(z+\omega)=f(z)$ for all $\omega \in L$.
(ii) Verify that f defines an analytic map $\mathbb{T} \rightarrow \mathbb{C}_{\infty}$, from the torus \mathbb{T} to the Riemann sphere. Determine the degree of f, and find branch points and their valencies, if there are any. Compare your results with the Riemann-Hurwitz formula.

