COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 11

Due Friday, April 26, 2013, at the beginning of class.
Please write clearly, and staple your work!

1. Problem

Prove that an elliptic function has as many poles as zeros.

2. Problem

Let Λ be the lattice generated by the linearly independent vectors $\left(\omega_{1}, \omega_{2}\right)$, and \mathcal{P} the corresponding Weierstrass function. Prove that every meromorphic function on the torus $\mathbb{C} / \Lambda, f \in \mathcal{M}(\mathbb{C} / \Lambda)$, can be written in the form

$$
f(z)=R(\mathcal{P}(z))+Q(\mathcal{P}(z)) \mathcal{P}^{\prime}(z),
$$

where R, Q are rational functions, and \mathcal{P}^{\prime} is the complex derivative of \mathcal{P}.
Hints: See next page.

3. Problem

(i) Verify that $S L(2, \mathbb{Z})$ is generated by the elements

$$
J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

(give a simple interpretation of the Möbius transformations corresponding to J and T). That is, every $A \in S L(2, \mathbb{Z})$ can be written as a finite word

$$
A=J^{\epsilon_{1}} T^{m_{1}} J T^{m_{2}} J \cdots T^{m_{\ell}} J^{\epsilon_{2}}
$$

with $m_{j} \in \mathbb{Z}$, and $\epsilon_{1}, \epsilon_{2} \in\{0,1\}$.
Hints: See next page.
(ii) The order m of an element $g \in S L(2, \mathbb{Z})$ (or any group) is the smallest positive integer such that $g^{m}=\mathbf{1}$. Determine the orders of J, T, and $U:=J^{2} T J=-T J$.
(iii) Consider the fundamental domain of $\mathbb{H} / S L(2, \mathbb{Z})$ (here including all boundaries),

$$
\mathcal{F}:=\left\{z \in \mathbb{C}\left|\operatorname{Im}(z)>0,|z| \geq 1, \operatorname{Re}(z) \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right\} \subset \mathbb{H} .\right.
$$

For $A \in S L(2, \mathbb{Z})$, let $A \mathcal{F}:=\left\{T_{A}(z) \mid z \in \mathcal{F}\right\}$, where T_{A} is the Möbius transformation corresponding to A. Determine the regions $J \mathcal{F}, T \mathcal{F}, U \mathcal{F}, U J \mathcal{F}, U T \mathcal{F}, U^{2} \mathcal{F}$.

Hints for Problem 2

First consider $f \in \mathcal{M}(\mathbb{C} / \Lambda)$ even, of degree $m \in 2 \mathbb{N}$ (why is the degree even ?). Let $m=2 k$. Let $\mathcal{B}:=\left\{z \in \mathbb{C} / \Lambda \mid f^{\prime}(z)=0\right\}$ denote the set of branch points. Assume that $w \notin f(\mathcal{B})$. Verify that $f(z)=w$ has $2 k$ distinct solutions $\left\{c_{1}, \cdots, c_{k}, c_{1}^{\prime}, \cdots, c_{k}^{\prime}\right\} \subset \mathbb{C} / \Lambda$ which appear in pairs satisfying $c_{j}+c_{j}^{\prime} \in \Lambda$, where in particular c_{j} and c_{j}^{\prime} are different.

Moreover, let $u \neq w$ with $u \notin f(\mathcal{B})$, and let $\left\{d_{j}, d_{j}^{\prime}\right\}_{j=1}^{k} \subset \mathbb{C} / \Lambda$ be the solutions of $f(z)=u$.

Then, compare the functions

$$
g(z):=\frac{f(z)-w}{f(z)-u} \quad \text { and } \quad h(z):=\prod_{j=1}^{k} \frac{\mathcal{P}(z)-\mathcal{P}\left(c_{j}\right)}{\mathcal{P}(z)-\mathcal{P}\left(d_{j}\right)} .
$$

Next, for f odd, note that f can be written as $f=f_{\text {even }} \mathcal{P}^{\prime}(z)$, where $f_{\text {even }}=\frac{f}{\mathcal{P}^{\prime}}$ is even.

Hints for Problem 3

Problem 3(i): Let $H \subseteq S L(2, \mathbb{Z})$ denote the subgroup generated by J and T. Let $A=J=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L(2, \mathbb{Z})$. Prove by induction in $|c|$ that $A \in H$.

