COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 12

Due Friday, May 3, 2013, at the beginning of class.
Please write clearly, and staple your work !

1. Problem

Consider the Poisson kernel (we are dropping the tilde from the notation used in class)

$$
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos (2 \pi \theta)+r^{2}} \quad, \quad 0<r<1, \theta \in\left(-\frac{1}{2}, \frac{1}{2}\right] .
$$

Prove that the following hold:
(1) $\int_{-\frac{1}{2}}^{\frac{1}{2}} P_{r}(\theta) d \theta=1$ for all $0<r<1$.
(2) $\sup _{0<r<1} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|P_{r}(\theta)\right| d \theta<\infty$.
(3) For any $\eta>0$,

$$
\lim _{r \rightarrow 1^{-}} \int_{|\theta|>\eta}\left|P_{r}(\theta)\right| d \theta=0
$$

(4) $P_{r}(\theta)=P_{r}(-\theta)=P_{r}(\theta+1)$ is a 1-periodic, even function, monotonically decreasing in $\theta \in\left(0, \frac{1}{2}\right]$, and can be written in the form

$$
P_{r}(\theta)=\int_{0}^{\frac{1}{2}} \chi_{[-\phi, \phi]}(\theta) d \mu(\phi)
$$

for $0<r<1$, where the measure μ is defined by

$$
d \mu(\phi)=\left(\partial_{\phi} P_{r}(\phi)\right) d \phi-P_{r}\left(\frac{1}{2}\right) \delta\left(\phi-\frac{1}{2}\right) d \phi,
$$

with δ denoting the Dirac distribution (defined by $\int g(x) \delta(x) d x=g(0)$).

2. Problem

Assume that $f \in C(\partial \mathbb{D})$ is a continuous function on $\partial \mathbb{D}$, parametrized by $\theta \in\left(-\frac{1}{2}, \frac{1}{2}\right]$ (thus, $f(\theta+1)=f(\theta))$. Prove that

$$
u(z)=\left(P_{r} * f\right)(\theta)=\int_{-\frac{1}{2}}^{\frac{1}{2}} P_{r}(\theta-\phi) f(\phi) d \phi \quad, \quad z=r e^{2 \pi i \theta},
$$

is harmonic in \mathbb{D}.

3. Problem

Let $f \in C(\partial \mathbb{D})$ be a continuous function on $\partial \mathbb{D}$, parametrized by $\theta \in\left(-\frac{1}{2}, \frac{1}{2}\right]$. Prove that

$$
\lim _{r \rightarrow 1^{-}} \sup _{\theta \in\left(-\frac{1}{2}, \frac{1}{2}\right]}\left|\left(P_{r} * f\right)(\theta)-f(\theta)\right|=0 .
$$

