COMPLEX ANALYSIS – HOMEWORK ASSIGNMENT 12

Due Friday, May 3, 2013, at the beginning of class.

Please write clearly, and staple your work !

1. Problem

Consider the Poisson kernel (we are dropping the tilde from the notation used in class)

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos(2\pi\theta) + r^2} \quad , \quad 0 < r < 1 \; , \; \theta \in \left(-\frac{1}{2}, \frac{1}{2}\right].$$

Prove that the following hold:

- (1) $\int_{-\frac{1}{2}}^{\frac{1}{2}} P_r(\theta) d\theta = 1$ for all 0 < r < 1.
- (2) $\sup_{0 < r < 1} \int_{-\frac{1}{2}}^{\frac{1}{2}} |P_r(\theta)| d\theta < \infty.$ (3) For any $\eta > 0$,

$$\lim_{r \to 1^{-}} \int_{|\theta| > \eta} |P_r(\theta)| d\theta = 0$$

(4) $P_r(\theta) = P_r(-\theta) = P_r(\theta+1)$ is a 1-periodic, even function, monotonically decreasing in $\theta \in (0, \frac{1}{2}]$, and can be written in the form

$$P_r(\theta) = \int_0^{\frac{1}{2}} \chi_{[-\phi,\phi]}(\theta) d\mu(\phi)$$

for 0 < r < 1, where the measure μ is defined by

$$d\mu(\phi) = (\partial_{\phi}P_r(\phi))d\phi - P_r\left(\frac{1}{2}\right)\delta\left(\phi - \frac{1}{2}\right)d\phi,$$

with δ denoting the Dirac distribution (defined by $\int g(x)\delta(x)dx = g(0)$).

2. Problem

Assume that $f \in C(\partial \mathbb{D})$ is a continuous function on $\partial \mathbb{D}$, parametrized by $\theta \in (-\frac{1}{2}, \frac{1}{2}]$ (thus, $f(\theta + 1) = f(\theta)$). Prove that

$$u(z) = (P_r * f)(\theta) = \int_{-\frac{1}{2}}^{\frac{1}{2}} P_r(\theta - \phi) f(\phi) d\phi \quad , \quad z = r e^{2\pi i \theta} \,,$$

is harmonic in \mathbb{D} .

3. Problem

Let $f \in C(\partial \mathbb{D})$ be a continuous function on $\partial \mathbb{D}$, parametrized by $\theta \in (-\frac{1}{2}, \frac{1}{2}]$. Prove that

$$\lim_{r \to 1^-} \sup_{\theta \in (-\frac{1}{2}, \frac{1}{2}]} \left| (P_r * f)(\theta) - f(\theta) \right| = 0.$$