COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 3

Due Friday, February 8, 2013, at the beginning of class.
Please write clearly, and staple your work !

1. Problem

Expand $\frac{2 z+3}{z+1}$ in powers of $z-1$. What is the radius of convergence?

2. Problem

Assume that γ denotes the contour given by the triangle with vertices at 0,1 , and i, oriented in counter-clockwise direction. Determine the contour integrals

$$
\oint_{\gamma} \frac{z^{3}+1}{z^{2}-4} d z \quad, \quad \oint_{\gamma} \bar{z} d z .
$$

3. Problem

Let $P(z)$ be a polynomial of degree n. Prove that $P(z)=0$ has n solutions in \mathbb{C}.

4. Problem

(a) Determine the conformal maps $\mathbb{C}_{\infty} \rightarrow \mathbb{C}$.
(b) Determine the conformal maps $\mathbb{C} \rightarrow \mathbb{H}$.

5. Problem

A map g is called open (closed) if the image under g of any open (closed) set is open (closed). Recall that a function g is continuous if the pre-image of any open set under g is open.
(a) Give an example of a function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous but not open.
(b) Show that the angle function $\theta: S^{1} \rightarrow[0,2 \pi)$ is bijective, open and closed, but not continuous.
Hint: Note that this is in the topology of $[0,2 \pi)$ as the full space and not as a subset of \mathbb{R}. Thus, the open subsets are generated by intervals of the form $[0, a),(a, 2 \pi)$, and (a, b) with $0<a<b<1$.

6. Problem

Assume that $f: \Omega \rightarrow f(\Omega)$ is holomorphic and injective on $\Omega \subset \mathbb{C}$.
(a) Prove that $f^{\prime} \neq 0$ everywhere in Ω.
(b) Prove that f is an open map.
(c) Prove that $f^{-1}: f(\Omega) \rightarrow \Omega$ is holomorphic.

