COMPLEX ANALYSIS - HOMEWORK ASSIGNMENT 6

Due Friday, March 8, 2013, at the beginning of class.
Please write clearly, and staple your work!

1. Problem

What can you say about an entire function whose real part is always less than its imaginary part? Justify your answer.

2. Problem

Evaluate the integrals

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x
$$

and

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{2}+a^{2}} d x \quad, \quad a \in \mathbb{R}
$$

using the method of residues.

3. Problem

Determine the integral

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

by integrating the function $\left(e^{2 i z}-1\right) / z^{2}$ along a suitable contour.

4. Problem

Assume that f is a holomorphic function on $\mathbb{C} \backslash\left\{z_{j}\right\}_{j=1}^{J}$. Moreover, for an arbitrary $j \in$ $\{1, \ldots, J\}$, assume that around z_{j}, the Laurent series is given by

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}^{(j)}\left(z-z_{j}\right)^{n}
$$

Prove that the principal part,

$$
P^{(j)}(z):=\sum_{n=-\infty}^{-1} a_{n}^{(j)}\left(z-z_{j}\right)^{n},
$$

has convergence radius ∞, while the part

$$
T^{(j)}(z):=\sum_{n=0}^{\infty} a_{n}^{(j)}\left(z-z_{j}\right)^{n}
$$

has convergence radius $R_{j}:=\min \left\{\left|z_{j}-z_{\ell}\right| \mid \ell \in\{1, \ldots, J\}, \ell \neq j\right\}$.

