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Abstract

Based on three lectures given at the conference “Renormalization Group Methods in the

Mathematical Sciences” at RIMS, Kyoto University, in September 2009, we survey the results

in [13, 14, 15] addressing the kinetic scaling limits and effective Boltzmann equations for the

weakly disordered Anderson model. Moreover, we present related results for ideal Fermi gases

in random media, based on a joint work with I. Sasaki, [16], and for Fermi gases in random

media with dynamical Hartree-Fock interactions, based on a collaboration with I. Rodnianski,

[17].

§ 1. Introduction

In this article, we survey the results in [13, 14, 15, 16, 17] addressing the transport
properties of charged quantum mechanical particles (electrons) in random media, such as
semiconductors. The main questions in this research area address the mathematically
rigorous understanding of electric conductivity or insulation, from first principles in
quantum mechanics. The presentation is structured as follows.

In Section 2, we discuss the Boltzmann limit for the quantum dynamics of an
electron in a random medium. A widely used model to study such a system is the
Anderson model, with Hamiltonian Hω = −∆+η ωx acting on `2(Zd), where (∆f)(x) =∑

|y−x|=1 f(y) is the nearest neighbor Laplacian on Zd, and {ωx} is an i.i.d. random
field of random variables which act as multiplication operators.
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The absence of electron transport (Anderson localization, electric insulators) for
large |η| � 1, is nowadays mathematically well-understood, [2, 33]. On the other
hand, the weak disorder regime, |η| � 1, poses some very prominent open problems.
Only in dimension d = 1, it is known that Anderson localization occurs for all values
of |η| > 0, [12]. In d = 2, it is conjectured that even for small |η| � 1, Anderson
localization persists. In d ≥ 3, it is conjectured that there exists a component of
absolutely continuous spectrum, associated to delocalized states and electric conduction.
For a kinetic scaling determined by macroscopic time and space coordinates (T,X) =
η2(t, x), it is proven that, as η → 0, the semiclassical dynamics is determined by a linear
Boltzmann equation in the seminal works [26, 34, 51]; see also [13, 14, 15]. It is proven
in the breakthrough work [27, 28, 30, 29] that for d ≥ 3, the dynamics predicted by
the Anderson model is diffusive, in a scaling limit that corresponds to large but finite
times. It is expected that diffusive transport holds for all times, thus explaining electric
conductivity, and the delocalization of electron wave functions in the relevant energy
regimes. We also refer to the important related works [3, 9, 10, 11, 21, 25, 37, 38, 39,
40, 43, 44, 45, 47, 48, 50].

In Section 3, we discuss the results from [15] (which contains a joint result with
L. Erdös). It is proven for the same kinetic scaling limit as in Section 2 that the
macroscopic dynamics is determined by a linear Boltzmann equation, in higher mean
Lr with respect to the randomness, for any finite r ≥ 1. This significantly improves
the mode of convergence in [15] and in [26, 34] where convergence in distribution was
established. The complexity and number (superfactorial versus factorial) of Feynman
graphs entering this analysis is significantly higher than in the works above.

In Section 4, we discuss lower bounds on the localization lengths for the Anderson
model. In the important work [49], C. Shubin, W. Schlag, and T. Wolff proved for the
Anderson model with small Gaussian or Bernoulli randomness that with probability
one, the localization length of eigenstates is bounded below by O(λ−2) in d = 1, and
by O(λ−2+δ) in d = 2, outside a small exceptional energy range. A very interesting
related question was studied by J. Bourgain in [10] where the fact is established that
with large probability, the weakly disordered Anderson model on Z2 with a random
potential decaying like |x|−σ with σ > 1

2 exhibits purely absolutely continuous (a.c.)
spectrum and scattering. Similar problems were studied in [32, 20, 47].

We discuss results from [14]; it is proven for decay exponents 0 < σ ≤ 1
2 that if

σ = 1
2 (a marginal renormalization problem), the localization length of eigenfunctions

is bounded below by 2λ− 1
4 +η

, while for 0 < σ < 1
2 (a relevant renormalization problem),

the lower bound is λ−
2−η
1−2σ , for any η > 0. These estimates ”interpolate” between the

lower bound λ−2+η of Schlag-Shubin-Wolff for σ = 0, and ∞ corresponding to pure a.c.
spectrum for σ > 1

2 as established by Bourgain (see also [11]). In particular, we discuss
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how the localization conjecture for the weakly disordered Anderson model in d = 2 can,
in this setting, be interpreted in the context of renormalization group theory.

In Section 5, we discuss the dynamics of an ideal Fermi gas in a random medium,
based on joint work with I. Sasaki, [16]. The Anderson model neglects the repulsion
between the electrons due to Coulomb interactions, and the Pauli principle. In [16],
we consider some basic aspects of the question about the extent to which manybody
effects influence the predictions of the Anderson model at small disorders. In [16],
we analyze the dynamics of an ideal (i.e., λ = 0) homogenous Fermi gas in a weak
random potential. We derive the kinetic scaling limit for the momentum distribution
function with a translation invariant initial state and prove that it is determined by
a linear Boltzmann equation. We prove that if the initial state is quasifree, then the
time evolved state, averaged over the randomness is not quasifree, but has a quasifree
kinetic limit. We show that the momentum distributions determined by the Gibbs states
of a free fermion field are stationary solutions of the linear Boltzmann equation; this
includes the limit of zero temperature. We note that recently, important results on the
persistence of localization in fermionic manybody models at strong disorders (a topic
which is not addressed here) have been established in [4, 18, 19].

In section 6, we discuss the joint work [17] with I. Rodnianski, which investigates the
dynamics of a Fermi gas in a random medium where the particle interactions between
the fermions are modeled in dynamical Hartree-Fock theory. We derive Boltzmann
equations in kinetic scaling limits for scaling regimes determined by different ratios
between the strengths of the randomness, and of the particle interactions. Central to
this work is the development of methods to control the nonlinear self-interactions of
the quantum field, combined with Feynman graph expansion methods to govern the
randomness.
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§ 2. Kinetic limit for the weakly disordered Anderson model

In this section, we address the derivation of linear Boltzmann equations as the
kinetic scaling limit of the Schrodinger dynamics in the weakly disordered Anderson
model on the lattice, Z3, [13]. The results are closely related to the pioneering work of
L. Erdös and H.-T. Yau, [34], in which the weak coupling and kinetic limit has been
derived for a random Schrödinger equation in the continuum Rd, d = 2, 3, for a Gaussian
random potential, globally in macroscopic time. The corresponding local in macroscopic
time result was first proved by H. Spohn [51]. In [13], the results of [34] are extended
to the lattice, and to non-Gaussian randomness.

§ 2.1. The Anderson Model

Let ΛL := [−L,L]d ∪ Zd be a box with side length L� 1 which we will eventually
send to infinity. Let Λ∗

L := 1
LΛL denote the associated dual lattice.

The Anderson model on ΛL is defined by the Hamiltonian

Hω = ∆ + ηVω(2.1)

acting on the Hilbert space `2(ΛL). For concreteness, we shall assume periodic boundary
conditions. Here, ∆ denotes the centered nearest neighbor Laplacian,

∆ψ(x) =
∑

|x−y|=1

ψ(y) .

Its spectrum is given by spec ∆ = [−2d, 2d]∩ 1
Ld Z. Furthermore, Vω denotes a random

potential which acts as a multiplication operator in position space, (Vωψ)(x) = ωxψ(x),
x ∈ ΛL, where {ωx}x∈ΛL

is a field of centered i.i.d. random variables. That is, E[ωx] = 0,
E[ω2

x] = 1. The parameter η > 0 accounts for the disorder strength. We assume the
moment bounds

E[ω2m
x ] =: c̃2m ≤ (2m)! cω , c̃2 = 1 , ∀x ∈ Z3 , ∀m ≥ 1 ,(2.2)

hold where the constant cω < ∞ is independent of m. For any L < ∞, Hω is almost
surely selfadjoint on `2(ΛL).

For the Fourier transform, we use the convention

f̂(p) :=
∑

x∈ΛL

e−2πip·x f(x) ,(2.3)

where p ∈ Λ∗
L, and

f(x) =
1
Ld

∑
p∈Λ∗

L

e2πip·x f̂(p)(2.4)
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for its inverse. For brevity, we will use the notation∫
dp ≡ 1

Ld

∑
p∈Λ∗

L

(2.5)

in the sequel, which recovers its usual meaning in the thermodynamic limit L→ ∞.
The nearest neighbor lattice laplacian is a Fourier multiplication operator

∆̂ψ (k) = e∆(k) ψ̂(k)

whose symbol

e∆(k) =
d∑

i=1

2 cos(2πki)

is the kinetic energy of the quantum mechanical electron.
In the Anderson model, the dynamics of an electron in a random medium is deter-

mined by the Schrödinger equation on `2(ΛL),

i ∂t ψt(x) = Hω ψt(x)

ψ0 ∈ `2(ΛL)

The solution to this Cauchy problem is given by the unitary flow generated by Hω, that
is, ψt = e−itHω ψ0.

§ 2.2. Kinetic scaling limits for small disorders η � 1

We will now discuss [13] (which contains a joint result with Erdös and Yau), which
generalizes the results in [26, 34] to the lattice and non-Gaussian case. It is shown that
the kinetic scaling limit of the quantum dynamics in the weakly disordered Anderson
model is governed by a linear Boltzmann equation. A key technical problem is posed
by frequency space resolvent integrals which are singular on overlapping, non-convex
surfaces. Its solution involves considerations related to restriction theory in Harmonic
Analysis, [13, 27, 28, 29, 53]; see also [39, 40].

We consider the Wigner transform of ψt = e−itHωψ0

Wt(x, v) =
∑

y

ψt(x− y

2
) ψt(x+

y

2
) e2πivy ,

and the associated rescaled Wigner transform

W
(η)
T (X,V ) =

(
1
η2

)3

WT/η2(X/η2, V )

according to the kinetic scaling (T,X) = η2(t, x). Then, the Boltzmann limit holds in
the sense of weak convergence in distribution.
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Theorem 2.1. [34, 13] For µ > 0, let

φµ
0 (x) := µ

3
2
h(µx) e2πi

S(µx)
µ

‖h‖`2(µZ3)
,(2.6)

with h, S ∈ S(R3,R) of Schwartz class, and ‖h‖L2(R3) = 1. Assume L sufficiently large

that φµ
0

∣∣∣
ΛL

= φµ
0 . Let φµ

t be the solution of the random Schrödinger equation

i ∂tφ
µ
t = Hω φ

µ
t(2.7)

on `2(ΛL) with initial condition φµ
0 , and let

W
(µ)
T (X,V ) := Wµ

φµ

µ−1T

(X,V )(2.8)

denote the corresponding rescaled Wigner transform.
Choosing

µ = η2 ,(2.9)

where η is the coupling constant in (2.1), it follows that

lim
η→0

lim
L→∞

E
[
〈J , W (η2)

T 〉
]

= 〈J , FT 〉 ,(2.10)

where FT (X,V ) solves the linear Boltzmann equation

∂TFT (X,V ) +
3∑

j=1

(sin 2πVj)∂XjFT (X,V )

=
∫

T3
dU σ(U, V ) [FT (X,U) − FT (X,V )](2.11)

with initial condition

F0(X,V ) =w − lim
µ→0

Wµ
φµ

0

= |h(X)|2 δ(V − ∇S(X)) ,(2.12)

and where
σ(U, V ) := 2π δ(e∆(U) − e∆(V ))

denotes the collision kernel.

§ 2.3. Main ingredients of the proof

As a starting point, we represent the solution ψt of the random Schrodinger equation
as a truncated resolvent expansion,

ψt =
1

2πi

∫
R+iε

dz e−itz 1
Hω − z

ψ0
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ψt =
N∑

n=0

ψ
(n)
t + R

(N)
t

ψ
(n)
t =

(−η)n

2πi
eεt

∫
R
dE e−itE

(
1

∆ − E − iε
Vω

)n 1
∆ − E − iε

ψ0

This induces a decomposition of the Wigner transform into

Wt =
N+1∑

n,en=0

W
(n,en)
t ,

and we consider its pairing with a rescaled test function, 〈Wt , Jη2 〉, where we define
Jµ(x, v) := µ−3J(µx, v).

Taking the expectation with respect to the random potential, one obtains an ex-
pansion of the form

E[
〈
Wt , Jη2

〉
] =

N+1∑
n,en=0

E[
〈
W

(n,en)
t , Jη2

〉
]

=
N+1∑

n,en=0

∑
π∈Γn,en

AmpJη2
(π)

where the resulting terms are organized by use of Feynman graphs. By Γn,en, we are
denoting the set of Feynman graphs on n + ñ vertices corresponding to copies of Vω,
and one distinguished vertex corresponding to Jη2 , see the next section.

The number of graphs is given by |Γn,en| ∼ (n+ ñ)!

2.3.1. Graph expansion
The elements of the set of Feynman graphs Γn,en, with n + ñ ∈ 2N, are defined

as follows. We consider two horizontal solid lines, which we refer to as particle lines,
joined by a distinguished vertex which we refer to as the ρ0-vertex (corresponding to
the term ρ0( a+

un
aun+1 ). On the line on its left, we introduce n vertices, and on the line

on its right, we insert ñ vertices. We refer to those vertices as interaction vertices, and
enumerate them from 1 to 2n̄ starting from the left. The edges between the interaction
vertices are referred to as propagator lines. We label them by the momentum variables
u0, ..., u2n̄+1, increasingly indexed starting from the left. To the j-th propagator line, we
associate the resolvent 1

E(uj)−α−iε if 0 ≤ j ≤ n, and 1
E(uj)−eα+iε if n+1 ≤ j ≤ 2n̄+1. To

the `-th interaction vertex (adjacent to the edges labeled by u`−1 and u`), we associate
the random potential V̂ω(u` − u`−1), where 1 ≤ ` ≤ 2n̄+ 1.

A contraction graph associated to the above pair of particle lines joined by the ρ0-
vertex, and decorated by n + ñ interaction vertices, is the graph obtained by pairwise
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connecting interaction vertices by dashed contraction lines. We denote the set of all
such contraction graphs by Γn,en; it contains

|Γn,en| = (2n̄− 1)(2n̄− 3) · · · 3 · 1 =
(2n̄)!
n̄!2n̄

= O(n̄!)(2.13)

elements.
If in a given graph π ∈ Γn,en, the `-th and the `′-th vertex are joined by a contraction

line, we write

` ∼π `′ ,(2.14)

and we associate the delta distribution

δ(u` − u`−1 − (u`′ − u`′−1)) = E[ V̂ω(u` − u`−1 ) V̂ω(u`′ − u`′−1 ) ](2.15)

to this contraction line.

1 n

n+1

2n

p
0

p
2n+1

Figure 1. An example of a Feynman graph, π ∈ Γn,en, with n = 5, ñ = 7. The distin-
guished vertex is filled.

We consider the following classification of Feynman graphs, [34].

• A subgraph consisting of one propagator line adjacent to a pair of vertices ` and
`+ 1, and a contraction line connecting them, i.e., ` ∼π `+ 1, where both `, `+ 1
are either ≤ n or ≥ n+ 1, is called an immediate recollision.

• The graph π ∈ Γn,n (i.e., n = ñ = n̄) with ` ∼π 2n− ` for all ` = 1, . . . , n, is called
a basic ladder diagram. The contraction lines are called rungs of the ladder. We
note that a rung contraction always has the form ` ∼π `

′ with ` ≤ n and `′ ≥ n+1.
Moreover, in a basic ladder diagram one always has that if `1 ∼π `′1 and `2 ∼π `′2
with `1 < `2, then `′2 < `′1.

• A diagram π ∈ Γn,en is called a decorated ladder if any contraction is either an
immediate recollision, or a rung contraction `j ∼π `′j with `j ≤ n and `′j ≥ n for
j = 1, . . . , k, and `1 < · · · < `k, `′1 > · · · > `′k. Evidently, a basic ladder diagram is
the special case of a decorated ladder which contains no immediate recollisions (so
that necessarily, n = ñ).

• A diagram π ∈ Γn,en is called crossing if there is a pair of contractions ` ∼π `′,
j ∼π j

′, with ` < `′ and j < j′, such that ` < j.
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• A diagram π ∈ Γn,en is called nesting if there is a subdiagram with ` ∼π `+2k, with
k ≥ 1, and either ` ≥ n+1 or `+2k ≤ n, with j ∼π j+1 for j = `+1, `+3, . . . , `+
2k − 1. The latter corresponds to a progression of k − 1 immediate recollisions.

We note that any diagram that is not a decorated ladder contains at least a crossing or
a nesting subdiagram.

To each Feynman graph, π ∈ Γm,n, we associate its Feynman amplitude, given by

AmpJη2
(π) =

η2n̄

(2π)2
e2εt

∫
R2
dE dE′ e−it(E−E′)∫

du0 · · · du2n̄+1 ψ̂0(u0) ψ̂0(u2n̄+1)
1
η6

Ĵ

(
un+1 − un

η2
,
un+1 + un

2

)

δπ(u)

 n∏
j=0

1
e∆(uj) − E − iε

 [
2n̄+1∏

`=n+1

1
e∆(u`) − E′ + iε

]
(2.16)

for π ∈ Πm,n and n̄ = m+n
2 (zero if m+ n 6∈ 2N). We set

ε =
1
t

=
η2

T
(2.17)

so that the overall exponential factor e2εt remains bounded. Here, δπ denotes the prod-
uct of the delta distributions associated to all contractions between random potentials
in π.

To prove the theorem, the following estimates are crucial:

• A priori bound: One first verifies that for every Feynman graph π, one obtains the a
priori bound ∣∣∣ AmpJη2

(π)
∣∣∣ ≤

(
log

1
η

)3 (
c T log

1
η

)n̄

To obtain this bound, one chooses a suitable spanning tree Tπ with n̄ + 2 edges for
every given Feynman graph π ∈ Γn,en. The edges contained in Tπ are called tree edges,
and accordingly, the momentum variables and resolvents supported on them are called
tree momenta and tree resolvents, respectively. The edges in π not contained in Tπ are
referred to as loop edges (because adding them to Tπ produces loop subdiagrams), and
correspondingly, they carry loop momenta and loop resolvents. A spanning tree Tπ is
admissible if it contains all contraction lines, and precisely one edge adjacent to the
distinguished vertex.

Associated to an admissible choice of Tπ, one integrates out all delta distributions
using the tree momenta, whereby the tree momenta are substituted by linear combina-
tions of loop momenta. Next, one applies the L∞-bound to the resolvents supported on
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n̄ edges of Tπ, ∥∥∥ 1
e∆( · ) − E + iε

∥∥∥
L∞(Td)

. 1
ε

(2.18)

and L1-estimates on the n̄ loop resolvents,∥∥∥ 1
e∆( · ) − E + iε

∥∥∥
L1(Td)

. log
1
ε
.(2.19)

Moreover, the integrals over the spectral parameters E,E′ can be controlled by applying∥∥∥∫
dE

1
|e∆( · ) − E + iε|

∥∥∥
L∞(Td)

. log
1
ε

(2.20)

to the two remaining tree resolvents. The a priori bound then follows.

• Dominant diagrams: The dominant contributions to the expansion are obtained from
decorated ladder diagrams, where∣∣∣ AmpJη2

(πladder)
∣∣∣ ≤ (c T )n̄

√
n̄!

is summable in n̄, uniformly in η.
The scaling limit of decorated ladder diagrams gives the solution FT (X,V ) of the

linear Boltzmann equation.

• Nesting and crossing diagrams: For every Feynman graph π that contains a crossing
or a nesting diagram, one obtains the upper bound∣∣∣ AmpJη2

(πcrossing/nesting)
∣∣∣ ≤ η

2
5

(
log

1
η

)3 (
c T log

1
η

)n̄

︸ ︷︷ ︸
a priori bound

where the gain of a factor η
2
5 over the a priori bound is crucial. The number of graphs

exhibiting a crossing or a nesting is O(n̄!).
Choosing the truncation of the resolvent expansion at

N ≈
log 1

η

log log 1
η

,

one obtains that

N∑
m,n=1

∑
Γm,n

∣∣∣ AmpJη2
(πcrossing/nesting)

∣∣∣ . ηδ
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for some δ > 0.

• Terms involving the remainder term R
(N)
t : If n and/or ñ = N + 1, the corresponding

term in the expansion for the Wigner transform involves the remainder term R
(N)
t of

the resolvent expansion. It can be proven that the sum of these contributions are also
bounded by . ηδ for the given choice of N , [34, 13]. We will not discuss the fairly
technical proof of this result in this survey.

In conclusion, collecting all of the above estimates, and letting η → 0, one obtains
the asserted Boltzmann limit.

2.3.2. Crossing estimates
The most difficult part in the analysis is the proof of smallness of the Feynman

amplitudes associated with crossing diagrams. Amplitudes of nesting graphs, on the
other hand, can be straightforwardly controlled by use of analyticity arguments. For
every crossing diagram, it is possible to choose a spanning tree for which the associated
bound on the Feynman amplitude contains a factor of the form∫

T3×T3
dp dq

1
|e∆(p) − E − iε|

1
|e∆(q) − E′ + iε|

1
|e∆(p+ q − u) − E − iε|

(2.21)

which can be trivally bounded by

.
(log 1

ε )2

ε
(2.22)

Here, p, q are loop momenta which appear only on the subgraph associated to this
expression, and u is a linear combination of loop momenta in π independent of p, q.
The bound 2.22 is insufficient for our purposes because it does not improve on the a
priori bound.

To improve on this bound, we observe that the singular integrand in (2.21) is
concentrated on the intersection of the ε-tubular neighborhoods of isoenergy surfaces

ΣE = {p ∈ T3 | e∆(p) = E} .(2.23)

The idea is to exploit the smallness of the intersection measure, in order to improve on
the trivial bound (2.22).

As a matter of fact, improving (2.22) by a factor εδ for any arbitrary δ > 0 suffices
for our purposes.

We remark that in the case of the continuum, Rd, the surfaces ΣE are spheres, and
it is easy to control the size of their ε-thickened intersections, [34].
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The geometry of level surfaces for lattice models

In the case of lattice models, the geometry of the isoenergy surfaces is necessarily
more complicated than in the continuum case. The prototypical situation is given by the
case of the nearest neighbor laplacian which acts as a Fourier multiplication operator
with symbol

e∆(p) = 2 cos(2πp1) + 2 cos(2πp2) + 2 cos(2πp3)(2.24)

in d = 3. The surface ΣE = {p ∈ T3 | e∆(p) = E} is non-convex, and exhibits lines of
vanishing Gauss curvature.

Naturally, one might ask if this problem can be circumvented by a different choice
of the kinetic energy operator than the nearest neighbor Laplacian ∆. However, this
problem cannot be avoided by a different choice of the kinetic energy operator, due
to the topology of (Zd)∗ ∼= Td. The reason is that at best, the kinetic energy e∆ :
Td → [−2d, 2d] is a (perfect) Morse function (which is the case for the nearest neighbor
laplacian), in case of which the Morse inequalities enforce a transition of ΣE between
a topological sphere and a surface of genus at least 3, depending on the paramter E.
This is because the Betti numbers bp of T3 are b0 = 1 = b3, and b1 = 3 = b2.

In [27], Erdös and Salmhofer have obtained a gain of ε
1
4 upon the a priori bound

(2.22) via a direct parametrization of level surfaces in 3D. Their result is obtained from
a very involved analysis and holds in greater generality than only for (2.24).

In [13], the author has independently provided an improvement of ε
1
5 upon (2.22)

by a short argument related to restriction estimates in Harmonic Analysis, involving
dimensional reduction. It holds for a smaller class of energy functions than those ad-
mitted in [27], in that it exploits the fact that the addititive structure of e∆(p) (2.24)
with respect to coordinate components.

For this discussion, we let d = 3. The argument proceeds as follows. We rewrite
the 3-dimensional integral into a parametrized 2-D integral,∫

T×T
dp3 dq3

∫
T2×T2

dp dq
1

|ẽ∆(p) − E(p3) − iε|
1

|ẽ∆(q) − E′(q3) + iε|
1

|ẽ∆(p+ q − u) − E(p3 + q3 − u3) − iε|

where p = (p1, p2, p3) and p := (p1, p2), and similarly for q and q. Moreover,

ẽ∆(p) := 2 cos(2πp1) + 2 cos(2πp2)(2.25)

and

E(p3) := E − 2 cos(2πp3) ,(2.26)
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et cetera. We note that there exists exactly one critical value Ecrit = 0, for which
the isoenergy curve {p ∈ T2|ẽ∆(p) = Ecrit} is a union of straight lines, and thus has
vanishing curvature. The idea is to exploit the fact that for a (p3, q3)-set of large mea-
sure, the level lines of the 2-dimensional problem parametrized by p, q have sufficiently
a curvature sufficiently bounded away from zero.

Let, for brevity, E1 := E(p3), E2 := E(q3), and E3 := E(p3 + q3 − u3).
We focus on the most singular part of

R̃i(p) :=
1

|ẽ∆(p) − Ei − iε|
(2.27)

which can be estimated by

Rν
i (p) := χν

i (p)
1

|ẽ∆(p) − Ei − iε|
. ν

ε
δν
i (p)(2.28)

where

χν
i (p) := χ{p| |fe∆(p)−Ei|<ν}(p)(2.29)

and

δν
i (p) :=

1
ν
χν

i (p)(2.30)

for some choice of ν > 0 which remains to be optimized, and χ a smooth characteristic
function. Then,

(δν
i )∨(x) =

∫
dp e−2πip·x δν

i (p)(2.31)

has a decay

|(δν
i )∨(x)| . τ−1/2 |x|−1/2 e−ν |x|(2.32)

for |Ei − Ecrit| > τ where Ecrit is the critical energy value for which the level line
has zero curvature. This curvature induced decay in x-space is related to restriction
problems in Harmonic Analysis, and is proven by use of stationary phase arguments.

If |Ei − Ecrit| > τ for i = 1, 2, 3, the contribution to the crossing integral can be
estimated by 〈

Rν
1 ∗Rν

2 , R
ν
3

〉
. (

ν

ε
)3

∑
x

(δν
1 )∨(x) (δν

2 )∨(x) (δν
3 )∨(x)(2.33)

. (
ν

ε
)3

∑
0<|x|. 1

ν

τ−3/2|x|−3/2(2.34)

= (
ν

ε
)3τ−3/2ν−1/2 .(2.35)
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On the other hand, the measure of the set of (p3, q3)-values for which there exists at
least one index i ∈ {1, 2, 3} such that |Ei −Ecrit| ≤ τ is small, of order O(τ1/2) (for the
choice of the cosine function, as it appears in ẽ∆). On this (p3, q3)-set, the level lines
have small curvature ≤ τ , and we only get〈

Rν
1 ∗Rν

2 , R
ν
3

〉
≤ 1

ε
(log

1
ε
)2 .(2.36)

Finally, for the non-singular region where |ẽ∆(p)−Ei| > Cν for at least one value of i,
we get a contribution of size

1
ν

(log
1
ε
)2(2.37)

to (2.21).
Combining the bounds for the two (p3, q3)-regions discussed above, we find the

upper bound∫
dp3 dq3

〈
R̃1 ∗ R̃2 , R̃3

〉
. (

ν

ε
)3τ−3/2ν−1/2 + (

1
ν

+
τ1/2

ε
)(log

1
ε
)2(2.38)

and choosing ν = ε4/5 and τ = ε2/5, one obtains∫
T3×T3

dp dq
1

|e∆(p) − E − iε|
1

|e∆(q) − E′ + iε|
1

|e∆(p+ q − u) − E − iε|
.

(log 1
ε )2

ε4/5
,

which improves (2.22) by a factor ε1/5 = O(η2/5).
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§ 3. Convergence in higher mean

In the previous section, we have discussed the fact that the dynamics on the av-
erage in the weakly disordered Anderson model is determined by a linear Boltzmann
equation. In this section, we want to address the following problem:

Key question: Does the average dynamics reflect the typical dynamics for a generic re-
alization of the random potential ?

As we will see, the answer is yes.

§ 3.1. Statement of the main results

For the analysis in this section, we assume that the initial condition ψ̂0 is again of
WKB type (2.6), and, in addition, that the singularities of its Fourier transform are ”not
too pathological”. The latter is expressed by the requirement that the Fourier transform
of the WKB initial condition (2.6) satisfies a concentration of singularity condition:

φ̂µ
0 (k) = fµ

∞(k) + fµ
sing(k) ,(3.1)

where

‖ fµ
∞ ‖L∞(T3) < c ,(3.2)

and

‖ |fµ
sing| ∗ |f

µ
sing| ‖L2(T3) = ‖ |fµ

sing|
∨ ‖2

`4(Z3) ≤ c′ µ
4
5(3.3)

for finite, positive constants c, c′ independent of µ. This condition imposes a restriction
on the possible choices of the phase function S in (2.6).

The following simple, but physically important examples of φ̂µ
0 satisfy (3.1) - (3.3).

3.1.1. Example Let S(X) = pX for X ∈ supp{h }, and p ∈ T3. Then,

φ̂µ
0 (k) =

µ− 3
2 ĥ(µ−1(k − p))
‖h‖`2(µZ3)

=: δµ(k − p) .(3.4)

Since h is of Schwartz class, δµ is a smooth bump function concentrated on a ball of
radius O(µ), with ‖δµ‖L2(T3) = 1. Accordingly, we find

(|δµ| ∗ |δµ|)(k) ≈ χ(|k| < cµ) ,(3.5)
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and

‖ |δµ| ∗ |δµ| ‖L2(T3) = ‖ |δµ|∨ ‖2
`4(Z3) ≤ c µ

3
2 .(3.6)

Hence, (3.1) - (3.3) is satisfied, with fµ
∞ = 0. We remark that in this example, p ∈ T3

corresponds to the velocity of the macroscopic initial condition F0(X,V ) in (2.12) for
the linear Boltzmann evolution.

3.1.2. Example As a small generalization of the previous case, we may likewise as-
sume for S that for every k ∈ T3, there are finitely many solutionsXj(k) of ∇XS(Xj(k)) =
k, and thatXj( · ) ∈ C1(supp{h }) for each j. Moreover, we assume that |detHessS(X)| >
c uniformly on supp{h }. Then, by stationary phase arguments, [53], one finds that

φ̂µ
0 (k) = fµ

∞(k) + fµ
sing(k) , ‖fµ

∞‖L∞(T3) < c(3.7)

with

fµ
sing(k) =

∑
j

cj δ
(j)
µ (k −∇XS(Xj(k))) ,(3.8)

for constants cj independent of µ, and smooth bump functions δ(j)µ similar to (3.4). One
again obtains ‖ |fµ

sing|∨ ‖2
`4(Z3) ≤ cµ

3
2 , which verifies that (3.1) - (3.3) holds. ∇S de-

termines the velocity distribution of the macroscopic initial condition F0(X,V ) in (2.12).

We may now state the main result of [14].

Theorem 3.1. (T. C., [14]) Assume that the Fourier transform of (2.6), φ̂µ
0 ,

satisfies the concentration of singularity property (3.1) - (3.3). Then, for

µ = η2 ,(3.9)

and for any fixed, finite r ∈ 2N, any T > 0, and for any Schwartz class function J , the
estimate

lim
L→∞

(
E

[ ∣∣∣ 〈
J , W

(η2)
T

〉
− E

[ 〈
J , W

(η2)
T

〉 ] ∣∣∣r]) 1
r ≤ c(r, T )η

1
300r(3.10)

holds for η sufficiently small, and a finite constant c(r, T ) that does not depend on η.
Consequently,

lim
η→0

lim
L→∞

E
[ ∣∣∣ 〈

J , W
(η2)
T

〉
−

〈
J , FT

〉 ∣∣∣r ]
= 0(3.11)

for any 1 ≤ r <∞ (i.e. convergence in r-th mean), and any T ∈ R+.
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§ 3.2. Main ingredients of the proof

Our starting point again is the truncated resolvent expansion

ψt =
1

2πi

∫
R+iε

dz e−itz 1
Hω − z

ψ0

ψt =
N∑

n=0

ψ
(n)
t + R

(N)
t

ψ
(n)
t =

(−η)n

2πi
eεt

∫
R
dE e−itE

(
1

∆ − E − iε
Vω

)n 1
∆ − E − iε

ψ0 .

Accordingly, it induces the decomposition of the Wigner transform into

Wt =
N+1∑

n1,n2=0

Wt;n1,n2 .

To determine higher order moments, we let r ∈ 2N. Then, clearly,(
E

[(
〈 Jη2 , Wφt 〉 − E〈Jη2 , Wφt 〉

)r
]) 1

r

≤ C N
N+1∑

n1,n2=0

(
E

[∣∣〈 Jη2 , Wt;n1,n2 〉 − E〈Jη2 , Wt;n1,n2 〉
∣∣r]) 1

r

,(3.12)

where Jµ(x, v) := µ−3J(µx, v). We observe that Ĵη2 forces |k − k′ (mod 2T3)| < cη2,
but that |k + k′ (mod 2T3)| is essentially unrestricted.

For n1, n2 ≤ N , we again explicitly determine the contractions among all copies
of the random potential, and organize the associated expansion in terms of Feynman
graphs. For convenience, we introduce the following multi-index notation: Let n ≡ n1,
and n̄ ≡ n1 + n2 be fixed. For j = 1, . . . , r, we let

k(j) := (k(j)
0 , . . . , k

(j)
n̄+1)

dk(j) :=
n̄+1∏
`=0

dk
(j)
`

dk
(j)
bJη2

:=
n̄+1∏
`=0

dk
(j)
` Ĵη2(k(j)

n − k
(j)
n+1,

k
(j)
n + k

(j)
n+1

2
)

K(j)[k(j), αj , βj , ε] :=
n∏

`=0

1

e∆(k(j)
` ) − αj − iεj

n̄+1∏
`′=n+1

1

e∆(k(j)
`′ ) − βj + iεj

U (j)[k(j)] :=
n∏

`=1

V̂ω(k(j)
` − k

(j)
`−1)

n̄+1∏
`′=n+2

V̂ω(k(j)
`′ − k

(j)
`′−1) ,(3.13)
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where εj := (−1)jε, αj , βj ∈ R, and where we note that V̂ω(k) = V̂ω(−k).
Moreover, let

α := (α1, . . . , αr) , dα :=
r∏

j=1

dαj ,(3.14)

and likewise for β, ξ and dβ, dξ. Then,

E
[(
〈 Jη2 , Wφt 〉

)r
]

=
e2rεtηrn̄

(2π)2r

∫
(R×R)r

dα dβ e−it
Pr

j=1(−1)j(αj−βj)

∫
(T3)(n̄+2)r

[ r∏
j=1

dk
(j)
bJη2

]
E

[ r∏
j=1

U (j)[k(j)]
]

r∏
j=1

K(j)[k(j), αj , βj , ε] φ̂
(j)
0 (k(j)

0 ) φ̂(j)
0 (k(j)

n̄+1) ,(3.15)

where

φ̂
(j)
0 :=

{
φ̂0 if j is even

φ̂0 if j is odd .
(3.16)

Clearly, the expectation E produces a sum of O((n̄r)!) singular integrals, which we or-
ganize via Feynman graphs. We note that the number of Feynman graphs at fixed n̄ is
superfactorial in n̄.

j=1

j=6

1 n n+1 n

k
o

(3)
k
n+1

(3)
j=2

Figure 2. A (completely connected) contraction graph for the case r = 6, n = 3, n̄ = 7.
The Ĵη2-vertices are drawn in black, while the V̂ω-vertices are shown in white. The
r particle lines are solid, while the lines corresponding to contractions of pairings of



Charge transport in random media 19

random potentials are dashed. For j = 3 in the notation of (3.15), the momenta k(3)
0

and k(3)
n̄+1 are written above the corresponding propagator lines.

Definition 3.2. We denote

Edisc

[ r∏
j=1

U (j)[k(j)]
]

:=
r∏

j=1

E
[
U (j)[k(j)]

]
(3.17)

as the expectation based on completely disconnected graphs. It includes contractions
among random potentials V̂ω only if they lie on the same particle line. We denote

En−d

[ r∏
j=1

U (j)[k(j)]
]

:= E
[ r∏

j=1

U (j)[k(j)]
]
− Edisc

[ r∏
j=1

U (j)[k(j)]
]
,(3.18)

as the expectation based on non-disconnected graphs. It is defined by the condition
that there is at least one connectivity component comprising more than one particle
line. Moreover, we refer to

E2−conn

[ r∏
j=1

U (j)[k(j)]
]

:= E
[ r∏

j=1

(
U (j)[k(j)] − E

[
U (j)[k(j)]

])]
(3.19)

as the expectation based on 2-connected graphs.

We make the key observation that for n1, n2 ≤ N , the expectation based on discon-
nected graphs of the r-th power precisely produces the r-th power of the expectation,

Edisc

[∣∣〈Jη2 , Wt;n1,n2 〉
∣∣r] =

∣∣∣E〈 Jη2 , Wt;n1,n2 〉
∣∣∣r .(3.20)

Therefore, the difference(
E

[∣∣〈Jη2 , Wt;n1,n2 〉 − E〈Jη2 , Wt;n1,n2 〉
∣∣r]) 1

r

=
(
E2−conn

[∣∣〈Jη2 , Wt;n1,n2〉
∣∣r]) 1

r

=
(
E2−conn

[(∣∣∣ ∫
dξdvĴη2(ξ, v) φ̂n2,t(v −

ξ

2
) φ̂n1,t(v +

ξ

2
)
∣∣∣2) r

2
]) 1

r

,(3.21)

involves only the expectation E2−conn based on 2-connected graphs.
The main technical result of [14] is the following proposition which asserts that

the expectation based on 2-connected graphs is small (a factor η2/5 smaller than the
corresponding a priori bound).

Proposition 3.3. ([14], in part joint with Laszlo Erdös). Let s ≥ 2, with sn̄ ∈
2N, and let T = η2t > 0, where ε = 1

t . Moreover, let π ∈ Π
( bJη2 ) 2−conn

s;n̄,n be a 2-connected
graph on s particle lines.
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Then, there exists a finite constant c = c(T ) such that

|Amp
bJη2

(π) | ≤ η
2
5 (log

1
η
)3 (c(T ) log

1
η
)

sn̄
2︸ ︷︷ ︸

a priori bound

.(3.22)

In particular, setting r = s, this bound holds for every non-disconnected graph.

Proof idea: The strategy of the proof is based on systematically disconnecting the con-
traction lines between different particle lines, and to reduce the problem to the L4-case
(i.e., the case r = 2). Then, we exploit momentum conservation constraints for es-
timates similar to the ones used for bounding the crossing diagrams in the previous
section.

The upper bounds on the contributions of the remainder term in the resolvent
expansion are similar. We shall not address them in any detail here because their
discussion is more technical. As a result of the above, we obtain the following:

Corollary 3.4. The sum of disconnected graphs yields, in the kinetic scaling
limit η → 0 with (T,X) = η2(t, x),

lim
η→0

Edisc

[ ∣∣∣ 〈
W

(η2)
T , J

〉 ∣∣∣r ]
=

∣∣∣〈FT , J
〉 ∣∣∣r

for any finite r ∈ 2N, and any test function J(X,V ).
Thus,

lim
η→0

E
[ ∣∣∣ 〈

W
(η2)
T , J

〉
−

〈
FT , J

〉 ∣∣∣r ]
︸ ︷︷ ︸

contains only non−disconnected graphs

= 0

for any r ∈ 2N, and thus for all 1 ≤ r <∞.

In particular, the variance (r = 2) tends to zero as η → 0. Moreover, from conver-
gence in higher mean, one immediately obtains convergence in probability.

Corollary 3.5. The rescaled Wigner transform converges weakly, and in proba-
bility, to a solution FT (X,V ) of the linear Boltzmann equation. That is,

lim
η→0

P
[ ∣∣∣ 〈

W
(η2)
T , J

〉
−

〈
FT , J

〉 ∣∣∣ > δ
]

= 0

for any δ > 0, and any test function J(X,V ).

We conclude that in this sense, the average dynamics in the kinetic scaling limit
indeed reflects the typical dynamics of the system.
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§ 4. Lower bounds on localization lengths

We recall the main conjecture for the 2-dimensional Anderson model:

Conjecture: In dimension 2, Anderson localization holds for all η > 0. The localiza-
tion length is of size O( exp( η−c ) ), for some c > 0.

Heuristically, the localization length is the typical diameter of the support of lo-
calized eigenfunctions. There are many various precise definitions, adapted to different
contexts, which we will not address in detail here.

In the important work [49], C. Shubin, W. Schlag and T. Wolff, prove the following.

Theorem 4.1. (C. Shubin, W. Schlag, T. Wolff, [49]) Assume that the random
potential in the Anderson model is either Gaussian or Bernoulli. Then, with probability
one, the localization length of eigenstates (outside a small exceptional energy range) is
bounded below by O(η−2) in d = 1, and by O(η−2+δ) in d = 2.

In their proof, the authors of [49] use techniques of harmonic analysis to establish
for the Anderson model in d = 1, 2 and small η > 0, that with probability one, most
eigenstates are in frequency space concentrated on shells of thickness ≤ η2 in d = 1,
and ≤ η2−δ in d = 2. The eigenenergies are required to be bounded away from the
edges of the spectrum of the nearest neighbor laplacian ∆, and in d = 2, also away
from its center. By the uncertainty principle, this implies the asserted lower bounds
of order O(η−2) in d = 1, and and O(η−2+δ) in d = 2, on the localization lengths in
position space. Closely related to their work are the papers [43, 44, 45] by Magnen,
Poirot, Rivasseau, and [46] by Poirot, who used, amongst others, ideas stemming from
the renormalization group analysis of fermionic manybody systems, to study the Greens
functions associated to Hω.

The class of methods employed in [49] and [43, 44, 45, 46] is known to be extremely
powerful in d = 1, 2, but less suitable for d = 3. In the paper [13], an entirely different
approach is taken to prove the following result.

Theorem 4.2. (T. C., [13]) In d = 3, the localization length of eigenfunctions
is bounded from below by η of order O( η−2

| log η| ), for η > 0 small, and with probability one.

The link between the localization length and the bounds proven for the Boltzmann
limit in [13] is a joint result of the author with L. Erdös and H.-T. Yau. The argument
can be outlined as follows. We write the eigenfunctions of Hω (for finite L at first)
in the basis of Kronecker deltas on ΛL. It is impossible that the localization length is
smaller than the spreading size of each basis vector δx obtained from e−itHωδx.
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Thus, the estimate

E[ ‖ e−itHωφ0 − e−it∆φ0 ‖2
2 ] � 1(4.1)

with φ0 = δx, and some t > 0, implies that the localization length is ≥ O(t). However,
this bound is proven as part of the error estimate for the Boltzmann limit in [13], as
addressed in Section 2, for t = O(η−2).

§ 4.1. Decaying Random Potentials

The localization conjecture for the weakly disordered Anderson model in dimension
2 is a notoriously hard open problem. It is natural to ask whether there is an interpre-
tation in the context of renormalization group theory that elucidates more clearly the
nature of some of the obstacles.

In this section, we consider the weakly disordered Anderson model with a decaying
random potential. As will be described, this model exhibits a transition parametrized
by the decay exponent, from a scattering region, to a region where localization is con-
jectured.

To be precise, the Hamiltonian has the form

Hω = ∆ + ηVω(x)(4.2)

where

Vω(x) ∼ ωx

〈x〉σ
(4.3)

and 〈x〉 :=
√

1 + x2.
The following results have been established in the more recent literature: In the

supercritical case σ > 1
2 , it was proven by Bourgain in [10] that with large probability,

Hω (with Bernoulli or Gaussian randomness) has, for small η, pure a.c. spectrum in

Iτ := (−4 + τ,−τ) ∪ (τ, 4 − τ)(4.4)

(τ > 0 arbitrary, but fixed), noting that spec∆ = [−4, 4] in d = 2; moreover, the
wave operators were constructed, and asymptotic completeness was established. The
(generalized) eigenfunctions are therefore delocalized. Certain other classes of lattice
Schrödinger operators with decaying random potentials have been proven to exhibit
a.c. spectrum, scattering, and asymptotic completeness by Bourgain in [11], and by
Rodnianski and Schlag in [47]. We also note the contextually related work of Denissov
in [20].

As noted in the previous section, Schlag, Shubin and Wolff have proven lower
bounds on the localization length of eigenfunctions for d = 2 and σ = 0, of the form
η−2+δ, for any δ > 0, [49].
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We shall here address the case 0 < σ ≤ 1
2 in dimension d = 2. Our main results

are as follows.
For the critical decay exponent σ = 1

2 , the problem is marginal in the language of
renormalization group theory. Accordingly, we obtain a comparison of the logarithm of
the localization length to powers of η, yielding lower bounds on the localization length
that are exponential in 1

η , of the form 2η− 1
4 +δ

(δ > 0 arbitrary).
In the subcritical case 0 < σ < 1

2 , it is suspected that the model exhibits a signif-
icant component of point spectrum. In the language of renormalization group theory,
the potential scales like a relevant perturbation, whereby we obtain a comparison of the
localization length to powers of η. Consequently, our lower bounds on the localization
lengths are polynomial in 1

η for 0 < σ < 1
2 , of the form η−

2−δ
1−2σ (δ > 0 arbitrary).

Theorem 4.3. (T. C., [14]) For µ > 0 sufficiently small, 0 < η � µ, any fixed
τ with η � τ < µ, and any arbitrary δ > 0, the lower bound on the localization length
`σ(η) of eigenfunctions for eigenvalues in Iτ satisfies the following estimates:

• In the subcritical case 0 < σ < 1
2 , there exist positive constants η0(σ, δ) � 1 and Cσ

for every fixed 0 < σ < 1
2 such that

`σ(η) ≥ Cση
− 2−δ

1−2σ(4.5)

for all η < η0(σ, δ).

• In the critical case σ = 1
2 , there exists a positive constant η0(δ) � 1 such that

`σ= 1
2
(η) ≥ 2η− 1

4 +δ

(4.6)

for all η < η0(δ).

These estimates ”interpolate” between the lower bound η−2+δ of Schlag-Shubin-
Wolff for σ = 0, and ∞ corresponding to pure a.c. spectrum for σ > 1

2 due to Bourgain.

§ 4.2. Outline of the proof

The proof uses Feynman graph expansions adapted to a dyadic partition of unity
on Z2, combined with the smoothing of resolvent multipliers due to dyadic restriction,
inspired by Bourgain in [10].

We introduce a dyadic partition of unity,

∞∑
j=0

Pj = 1

where we require that Pj and vσ satisfy:
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• Pj ∼ χ(2j < |x| ≤ 2j+1).

• ‖F(PjPj′)‖L1(T2) ∼ 1 if |j − j′| ≤ 1

• PjPj′ = 0 if |j − j′| > 1.

• Vω(x) = vσ(x)ωx where vσ satisfies

|F(PjPj′v2
σ)| . 2−2σj |F(PjPj′)| ∼ 2−2σj |F(P 2

j )| if |j − j′| ≤ 1 .(4.7)

This implies

|x|σ|vσ(x)| . 1 , 0 < σ ≤ 1
2

(4.8)

because

‖Pjvσ‖`∞(Z2) = ‖P 2
j v

2
σ‖

1/2
`∞(Z2) ≤ ‖F(P 2

j v
2
σ)‖1/2

L1(T2) ∼ 2−σj(4.9)

holds.
Next, we partition V ≡ Vω into

V =
J+1∑
j=0

Vj

where 0 ≤ j ≤ J account for the dyadic annuli at scales |x| ∼ 2j , and where J + 1
accounts for the unbounded region |x| > 2J+1,

Vj(x) = Pj(x) vσ(x)ωx(4.10)

for 0 ≤ j ≤ J , and

VJ+1(x) = (
∞∑

j=J+1

Pj(x)) vσ(x)ωx .(4.11)

It is evident that

E[Vj(x)Vj′(x′)] = δ|j−j′|≤1Pj(x)Pj′(x)v2
σ(x)δx,x′ . 2−2σjδx,x′(4.12)

and

E[VJ+1(x)VJ+1(x′)] . 2−2σJδx,x′ .(4.13)

The expectations E[
∏

i Vji(xi)] satisfy Wick’s theorem.

Subsequently, we invoke estimates on the restriction of the resolvent 1
e∆−α−iε to

dyadic shells, which we adapt from those proven by Bourgain in [10].
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Lemma 4.4. Assume that α ∈ Iτ := (−4 + τ,−τ) ∪ (τ, 4 − τ). Then,∥∥∥ ∣∣∣ 1
e∆ − α− iε

∣∣∣ ∗ |F(PjPj′v2
σ)|

∥∥∥
L∞(T2)

.
{

2j(1−2σ) if j ≤ J

σ−12−2σJ ε−1 if j, j′ = J + 1
(4.14)

and ∥∥∥ ∣∣∣ 1
e∆ − α− iε

∣∣∣ ∗ |F(PjPj′v2
σ)|

∥∥∥
L1(T2)

. log
1
ε

(4.15)

for 0 ≤ j, j′ ≤ J + 1. The implicit constants only depend on τ , and are finite for τ > 0.

Again, we evaluate the expectation E explicitly in the resolvent expansion for φt,
truncated at N . Subsequently, we organize the resulting terms by use of Feynman
graphs, and in a similar manner as in section 2, we sum the contributions from all
scales, and obtain

E[ ‖φt − eit∆φ0 ‖2
2 ] . η2

J∑
j=0

2j(1−2σ)

︸ ︷︷ ︸
∼J2(1−2σ)J

+ η2 ε−1 σ−12−2σJ︸ ︷︷ ︸
J+1−th term

+(error terms) ,(4.16)

where the first term on the rhs stems from the sum over all annuli with 0 ≤ j ≤ J .
The second term stems from the remainder term indexed by J + 1 which accounts for
{x ∈ Z2 | |x| > 2J+1}. The last term depends on N , J , σ, ε, η, and accounts for various
errors terms which we will not address in any detail.

We again note that based on the arguments in the previous section, t is propor-
tional to lower bound on localization length. Hence, our goal is to maximize t = ε−1

while minimizing the rhs of (4.16).

The two dominant terms on the rhs of (4.16) are comparable and small for the
following choices of parameters:

• Subcritical σ < 1
2 : We set ε = t−1 ∼ 2−(1−2σ)J and η−2+δ ∼ J 2J , and N ∼ | log ε|

log | log ε|

• Critical σ = 1
2 : We set ε = t−1 ∼ 2−J and η−

1
4+δ = J = N . We note that the

exponent 1
4 is not optimal, owing to the loss of some powers of η caused by the

error terms.

From the above results, we conclude the following lower bounds on the localization
length:

• Subcritical σ < 1
2 : The localization length is bounded from below by &

(
η−2+δ

) 1
1−2σ .

This result interpolates between the bound of Shubin-Schlag-Wolff in [49], and the
scattering result of Bourgain in [10].
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• Critical σ = 1
2 : Due to the critical scaling, we obtain a lower bound on the localiza-

tion length & 2−( 1
η )1/4−δ

. We note that this result and its proof are reminiscent of
Nekhoroshev type estimates.

This concludes our outline of the proof of Theorem 4.3.

§ 4.3. Renormalization group interpretation

The localization conjecture for the weakly disordered Anderson model in d = 2 is
known as extremely hard. In view of the analysis of the weakly disordered Anderson
model with decaying random potential, we arrive at the following interpretation of this
problem, from the point of view of renormalization group theory.

The localization for the weakly disordered (0 < η � 1) Anderson model in d = 2 is
a Renormalization Group (RG) relevant problem, in the following sense (all statements
hold with large probability):

• For supercritical σ > 1
2 , the random potential is a perturbation is RG irrelevant

perturbation of the lattice laplacian, ∆. In the scaling limit, ∆ dominates over
Vω. Accordingly, as proven by Bourgain in [10], the perturbed Hamiltonian Hω is
unitarily equivalent to ∆, via the scattering map, for energies in Iτ . In this sense,
∆ and Hω belong to the same universality class of Hamiltonians, and restricted to
the spectral intervals Iτ , Hω has absolutely continuous spectrum.

• For critical σ = 1
2 , the random potential is a RG marginal perturbation of ∆. In

the scaling limit, ∆ and Vω scale in the same manner. The problem is scaling
critical, and the type of the spectrum is not known at present. It is not known if
this problem is strictly marginal, marginally relevant, or marginally irrelevant.

• For subcritical σ < 1
2 , the random potential is a RG relevant perturbation of ∆.

In the scaling limit, Vω dominates over ∆, which makes the conjectural presence
of point spectrum and localized states plausible. However, RG relevant problems
are notoriously difficult, and at present, there are no known methods to attack this
problem. In quantum field theory, RG relevant problems appear in the vicinity
of RG unstable fixed points, and are far less investigated than RG irrelevant or
marginally irrelevant problems.

In this sense, we conclude: The localization conjecture for the weakly disordered
(0 < η � 1) Anderson model in d = 2 is hard because it constitutes a RG
relevant problem.
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§ 5. Fermi gas in random medium - I. The ideal Fermi gas

The Anderson model neglects the repulsion between the electrons due to Coulomb
interactions, and the Pauli principle. This section addresses some recent results concern-
ing the dynamics of an ideal Fermi gas in a random medium, at positive temperature,
based on joint work of the author with I. Sasaki, [16]. In the next section, we address
a Fermi gas in a random medium with dynamical Hartree-Fock interactions, based on
joint work with I. Rodnianski, [17]. Our goal is to investigate the extent to which
manybody effects influence the predictions of the weakly disordered Anderson model.

We also refer to [4, 18, 19] for important recent results on the persistence of localiza-
tion in fermionic manybody models at strong disorders (a topic which is not addressed
here).

We consider a fermion gas in a finite box ΛL := [−L
2 ,

L
2 ]d∩Zd of side length L� 1,

with periodic boundary conditions, in dimensions d ≥ 3. We denote its dual lattice by
Λ∗

L := ΛL/L ⊂ Td.
We denote the fermionic Fock space of scalar electrons by

F =
⊕
n≥0

Fn ,(5.1)

where

F0 = C , Fn =
n∧
1

`2(ΛL) , n ≥ 1 .(5.2)

We introduce creation- and annihilation operators a+
p , aq, for p, q ∈ Λ∗

L, satisfying the
canonical anticommutation relations

a+
p aq + aq a

+
p = δ(p− q) :=

{
Ld if p = q

0 otherwise.
(5.3)

We define the fermionic manybody Hamiltonian

Hω := T + η Vω(5.4)

where

T =
∫
dpE(p) a+

p ap(5.5)

is the kinetic energy operator, and

Vω :=
∑

x∈ΛL

ωx a
+
x ax(5.6)
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couples the fermions to a static random potential. As previously, in the case of the
Anderson model, {ωx}x∈ΛL is a field of i.i.d. real-valued random variables which we
assume to be centered, normalized, and Gaussian for simplicity. Thus,

E[ωx ] = 0 , E[ω2
x ] = 1(5.7)

for all x ∈ ΛL. Moreover, we assume that

E(p) =
d∑

j=1

cos(2πpj) ,(5.8)

which defines the Fourier multiplier corresponding to the nearest neighbor Laplacian on
Zd.

Let

N :=
∑

x∈ΛL

a+
x ax(5.9)

denote the particle number operator. Clearly,

[Hω, N ] = 0(5.10)

holds.
Let A denote the C∗-algebra of bounded operators on F. We consider the dynamics

on A given by

αt(A) = eitHω Ae−itHω(5.11)

generated by the random Hamiltonian Hω.

§ 5.1. Statement of the main results

We consider a normalized, translation-invariant, deterministic state

ρ0 : A −→ C ,(5.12)

and define the associated time-evolved state

ρt(A) := ρ0( eitHω Ae−itHω ) ,(5.13)

with t ∈ R, and initial condition given by ρ0. We particularly focus on the dynamics of
the averaged two-point functions

E[ ρt( a+
p aq ) ] ,(5.14)
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where p, q ∈ Λ∗
L. Clearly,

E[ ρ0( a+
p aq ) ] = ρ0( a+

p aq ) = δ(p− q)
1
Ld

ρ0( a+
p ap ) ,(5.15)

where

δ(k) := Ldδk ,(5.16)

and where

δk =

{
1 if p = q

0 otherwise
(5.17)

denotes the Kronecker delta on the lattice Λ∗
L (mod Td). We remark that for fermions,

0 ≤ 1
Ld

ρ0( a+
p ap ) ≤ 1 ,(5.18)

since ‖a(+)
p ‖ = Ld/2 in operator norm, ∀p ∈ Λ∗

L.

§ 5.2. Boltzmann limit of the momentum distribution function

We denote the microscopic time, position, and velocity variables by (t, x, p), and
the corresponding macroscopic variables by (T,X, V ) = (η2t, η2x, v). We prove that the
momentum distribution ft(q) converges to a solution of a linear Boltzmann equation in
the limit η → 0.

Theorem 5.1. (T. C., I. Sasaki, [16]) We assume that ρ0 is translation invari-
ant. Then, the averaged two-point functions are translation invariant,

E[ρt( a+(f)a(g) )] =
∫
dp f(p) g(p) E[ρt( a+

p ap )] ,(5.19)

(i.e., diagonal in a+
p , ap) for any f, g ∈ S(Td) of Schwartz class, and the thermodynamic

limit

Ω(2;η)
T (f ; g) := lim

L→∞
E[ρT/η2( a+(f) a(g) )](5.20)

exists for all f, g ∈ S(Td), and T > 0.
For any T > 0 and all f, g ∈ S(Td), the limit

Ω(2)
T (f ; g) := lim

η→0
Ω(2;η)

T (f ; g)(5.21)

exists, and is the inner product of f, g with respect to a Borel measure FT (p)dp,

Ω(2)
T (f ; g) =

∫
dpFT (p) f(p) g(p) ,(5.22)
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where FT (V ) satisfies the linear Boltzmann equation

∂TFT (V ) = 2π
∫

Td

dU δ(E(U) − E(V ) ) (FT (U) − FT (V ) ) ,(5.23)

with initial condition

F0(p) = lim
L→∞

1
Ld

ρ0( a+
p ap )(5.24)

for p ∈ Td.

§ 5.3. Outline of the Proof

The proof of Theorem 5.1 can be sketched as follows. We consider the Heisenberg
evolution of the creation- and annihilation operators,

a(f, t) := eitHωa(f)e−itHω ,(5.25)

where f is a test function.

We make the key observation that since Hω is bilinear in a+, a, it follows that a(f, t)
is a linear superposition of annihilation operators. Therefore, there exists a function ft

such that

a(f, t) = a(ft) =
∫
dp ft(p) ap = (a+(ft))∗(5.26)

In particular,

i∂ta(ft) = [Hω , a(ft) ]

=
∫
dp ft(p)E(p) ap + η

∫
dp

∫
du ft(p) V̂ω(u− p) au

= a(∆ft ) + a( η V (1)
ω ft ) ,(5.27)

and moreover, it is clear that a(f, 0) = a(f0) = a(f). As before, ∆ is the nearest
neighbor Laplacian on ΛL. Moreover, H(1)

ω = Hω|F1 denotes the 1-particle Anderson
Hamiltonian, and V

(1)
ω = Vω|F1 is the 1-particle multiplication operator (V (1)

ω f)(x) =
ωxf(x).

Thus, ft solves the 1-particle random Schrödinger equation

i∂tft = H(1)
ω ft := ∆ft + η V (1)

ω ft(5.28)

f0 = f .(5.29)
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Accordingly,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) )

=
∫
dp dq ρ0( a+

p aq) ft(p) gt(q)

=
∫
dp J(p) ft(p) gt(p)(5.30)

where the momentum conservation condition

ρ0( a+
p aq) = δ(p− q) J(p)(5.31)

follows from translation invariance of ρ0, with

0 ≤ J(p) =
1
Ld
ρ0( a+

p ap ) =
1

1 + eh(p)
≤ 1 .(5.32)

The fact that J(p) ≤ 1 is a consequence of the Pauli principle.

For N ∈ N, we expand ft, gt into the truncated Duhamel series,

ft = f
(≤N)
t + f

(>N)
t ,(5.33)

with

f
(≤N)
t :=

N∑
n=0

f
(n)
t .(5.34)

The Duhamel term of n-th order (in powers of η) is given by

f̂
(n)
t (p) := ηn eεt

∫
dα eitα

∫
dk0 · · · dkn δ(p− k0)(5.35) ( n∏

j=0

1
E(kj) − α− iε

)( n∏
j=1

V̂ω(kj − kj−1)
)
f̂(kn) .

As in the discussion of the Boltzmann limit for the weakly disordered Anderson model,
we choose

ε =
1
t

(5.36)

so that the factor eεt remains bounded for all t. By

f
(>N)
t = iη

∫ t

0

ds ei(t−s)Hω V (1)
ω f

(N)
t (s) ,(5.37)

we account for the Duhamel remainder term.
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Accordingly,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) ) =
∑

n,en∈IN

ρ
(n,en)
t (f ; g)(5.38)

where

ρ
(n,en)
t (f ; g) := ρ0( a+(f (n)

t ) a(g(en)
t ) )(5.39)

for IN := {1, . . . , N,> N}.
Next, we use the following notation. If n, ñ ≤ N , and n+ ñ is odd, E[ρ(n,en)

t (p, q)] =
0. Thus, let

n̄ :=
n+ ñ

2
∈ N ,(5.40)

and we define {uj}2n̄+1
j=0 by

uj :=

{
kn−j if j ≤ n

k̃j−n−1 if j ≥ n+ 1 .
(5.41)

Thus, for n, ñ ≤ N (and V̂ω(u)∗ = V̂ω(−u)),

E[ρ(n,en)
t (f ; g)] = η2n̄ e2εt

∫
dα dα̃ eit(α−eα)∫

du0 · · · du2n̄+1 f(u0) g(u2n̄+1)J(un) δ(un − un+1)

n∏
j=0

1
E(uj) − α− iε

2n̄+1∏
`=n+1

1
E(u`) − α̃+ iε

E
[ n∏

j=1

V̂ω(uj − uj−1)
2n̄+1∏

j=n+2

V̂ω(uj − uj−1)
]

(5.42)

This expression is completely analogous to (2.16) in our previous discussion of the
Anderson model, and we organize the expectation with respect to the random potential
by use of Feynman diagrams.

Accordingly, to prove the theorem, we show that the Feynman amplitudes of cross-
ing and nesting diagrams yield small error terms, and that the amplitudes of decorated
ladder diagrams are dominant.

The sum of Feynman amplitudes associated to decorated ladder diagrams yields
the solution of the linear Boltzmann equation, as asserted in the theorem.
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§ 5.4. Discussion of the Result

An initial condition of particular interest is the Gibbs state (with inverse temper-
ature β and chemical potential µ) for a non-interacting fermion gas,

ρ0(A) =
1

Zβ,µ
Tr( e−β(T−µN)A )(5.43)

where Zβ,µ := Tr( e−β(T−µN) ). The corresponding momentum distribution function

lim
L→∞

1
Ld

ρ0( a+
p ap ) =

1
1 + eβ(E(p)−µ)

(5.44)

is a fixed point of the linear Boltzmann equation (5.23), for all β > 0, including the zero
temperature limit β → ∞ where in the weak sense,

1
1 + eβ(E(p)−µ)

→ χ[E(p) < µ] ,(5.45)

which is nontrivial if µ > 0. We note that the above results remain valid in the limit
β → ∞.

The momentum distribution in the free Gibbs state is the Fermi-Dirac distribution

F0(p) = lim
L→∞

ρ0(
1
Ld

a+
p ap ) . =

1
1 + eβ(E(p)−µ)

According to it, the probability of having a plane wave with momentum p is F0(p)
R

dp F0(p)
.

We make the key observation that for all 0 < β ≤ ∞,

F0(p) =
1

1 + eβ(E(p)−µ)

is a stationary solution of the Boltzmann equation. This remains true in zero tempera-
ture limit β → ∞ where (in the weak sense)

1
1 + eβ(E(p)−µ)

→ χ[E(p) < µ]

which is nontrivial whenever µ > 0.

§ 5.5. Persistence of Quasifreeness

A state ρ0 is quasifree (determinantal) if

ρ0( a+(f1) · · · a+(fr)a(g1) · · · a(gs) )

= δr,s det
[
ρ0( a+(fi)a(gj) )

]
1≤i,j≤r

.
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In a quasifree state, the particles are uncorrelated, and obey the Pauli principle. In
addition to the Boltzmann limit described above, we are interested in the influence of
the random potential on the property of quasirandomness.

We observe that since Hω is bilinear in the creation- and annihilation operators,

K(t) := eitHω K e−itHω(5.46)

is also bilinear in a+, a. Therefore,

ρt(A) =
1
ZK

Tr( e−K(t)A )(5.47)

is quasifree with probability 1 (where ZK := Tr(e−K)).
However, the average E[ρt( · )] is not quasifree, for any η > 0, and t > 0. Notably,

quasifreeness is a nonlinear condition on determinants.

However, the kinetic scaling limit produces a quasifree limiting state.

Theorem 5.2. (T. C., I. Sasaki, [16]) Assume that ρ0 is number conserving,
quasifree, and translation invariant. Then, the following holds. For any normal ordered
monomial in creation- and annihilation operators,

a+(f1) · · · a+(fr) a(g1) · · · a(gr) ,(5.48)

with r, s ∈ N and Schwartz class test functions fj , g` ∈ S(Td), and any T > 0, the
macroscopic 2r-point function

Ω(2r)
T ( f1, . . . , fr ; g1, . . . , gr )(5.49)

:= lim
η→0

lim
L→∞

E[ρT/η2( a+(f1) · · · a+(fr) a(g1) · · · a(gr) )]

exists and is quasifree,

Ω(2r)
T ( f1, . . . , fr ; g1, . . . , gr ) = det

[
Ω(2)

T ( fi , gj )
]
1≤i,j≤r

.(5.50)

The macroscopic 2-point function is the same as in Theorem 5.1,

Ω(2)
T ( f ; g ) =

∫
dpFT (p) f(p) g(p) ,(5.51)

and FT (p) solves the linear Boltzmann equation (5.23) with initial condition (5.24).

For the proof, we employ the fact that the main estimate

lim
η→0

lim
L→∞

∣∣∣ E[ρT/η2( a+(f1) · · · a+(fr) a(g1) · · · a(gr) )]

− det
[
Ω(2)

T ( fi ; gj )
]
1≤i,j≤r

∣∣∣ = 0

can be interpreted as a corollary of (3.11) of Theorem 3.1.
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§ 6. Fermi gas in random medium - II. Fermi gas with dynamical
Hartree-Fock interaction

In this section, we include particle interactions between the fermions, modeled
in dynamical Hartree-Fock theory. As a consequence, it is necessary to control both
randomness and the nonlinearities arising from the self-interaction of the field. The
results presented here are based on joint work with I. Rodnianski, [17].

We consider the time-dependent Hamiltonian

H(t) = T + η Vω + λW (t)(6.1)

where the fermion-fermion interaction is modeled by

W (t) =
∑
x,y

v(x− y) {E[ ρt(a+
x ax) ] a+

y ay − E[ ρt(a+
y ax) ] a+

x ay } .(6.2)

The terms on the rhs correspond to the Hartree-Fock direct and exchange term, re-
spectively. The coupling constant λ accounts for the strength of interaction between
the fermions. The kinetic energy operator T and the operator Vω which describes the
interaction of each fermion with the static random potential are as in the previous
section. For technical reasons that we will not further address here, we assume that
‖v̂‖H3/2+δ(T3) < C for δ > 0 arbitrary but fixed.

We are interested in the dynamics of two-point function, which is determined by

i∂t ρt( a+
p aq )

= (E(p) − E(q) ) ρt( a+
p aq )

+λ

∫
duE[ ρt(

1
Ld
a+

u au ) ] ( v̂(u− p) ρt( a+
u aq ) − v̂(q − u) ρt( a+

p au ) )

+ η

∫
du ω̂(u− p)ρt( a+

u aq ) − ω̂(q − u)ρt( a+
p au )(6.3)

for any realization of the random potential, where ω̂(u) :=
∑

x∈ΛL
ωxe

−2πiu·x is well-
defined, almost surely (where we will ultimately let L→ ∞).

We make the following key observations:

• For a generic realization of the random potential, the problem is not translation
invariant.

• The equation (6.3) for the momentum distribution function ρt( a+
p ap ) does not

close.

However, we can close the equation for the momentum distribution function by
taking the expectation, E. This is because the E-average is translation invariant, due
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to the homogeneity of the randomness. Then, the average state E[ρt( · )] : A → C solves

i∂t E[ ρt(A ) ] = E[ ρt( [H(t) , A ] ) ]

E[ρ0] = ρ0 .(6.4)

This is a self-consistent nonlinear initial value problem determining E[ρt( · )].
We note that for every realization of Vω, we have

ρt(A ) = ρ0(U∗
t AUt )

for A ∈ A, with Ut unitary,

i∂t Ut = H(t)Ut ,

and U0 = 1. Notably, the Hamiltonian H(t) itself depends on E[ρt( · )]. In particular,
we note that

ρt( a+(f) a(g) ) = ρ0( a+(f, t) a(g, t) ) .(6.5)

The Heisenberg evolution of the creation- and annihilation operators is determined by

a(f, t) := U∗
t a(f)Ut .(6.6)

Similarly as in the case discussed for the ideal Fermi gas, there exists a function ft such
that

a(f, t) = a(ft) ,(6.7)

where ft is the solution of the 1-particle random Schrödinger equation

i∂tft(p) = E(p)ft(p) + η ( V̂ω ∗ ft )(p) − λ ( v̂ ∗ µt )(p)ft(p)(6.8)

with initial condition

f0 = f .(6.9)

Noting that the Hamiltonian H(t) itself depends on the unknown quantity

µt(p) :=
1
L3

E[ ρt( a+
p ap ) ] ,(6.10)

we determine µt by writing the solution to (6.4) in integral form, as an expansion in
powers of η.



Charge transport in random media 37

For arbitrary test functions f and g, we consider the pair correlation function

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) )

=
∫
dp dq ρ0( a+

p aq) ft(p) gt(q)

=
∫
dp J(p) ft(p) gt(p) .(6.11)

Passing to the last line, we have used the momentum conservation condition

ρ0( a+
p aq ) = J(p) δ(p− q)(6.12)

obtained from the translation invariance of the initial state ρ0, where

0 ≤ J(p) =
1
L3
ρ0( a+

p ap ) ≤ 1 ,(6.13)

similarly as in the case of the ideal Fermi gas.
The solution ft of (6.8), (6.9), satisfies the Duhamel formula

ft(p) = U0,t(p) f(p) + i η

∫ t

0

dsUs,t(p) ( V̂ω ∗ fs )(p)(6.14)

where

Us,t(p) := ei
R t

s
ds′ ( E(p)−λκs′ (p) )(6.15)

and

κs(u) := ( v̂ ∗ µs )(u) .(6.16)

We note that the term U0,t(p)f(p) solves (6.8) for η = 0 (no random potential) with
initial condition (6.9).

Let N ∈ N, which remains to be optimized. The N -fold iterate of (6.14) is given
by the truncated Duhamel expansion with remainder term,

ft = f
(≤N)
t + f

(>N)
t ,(6.17)

where

f
(≤N)
t :=

N∑
n=0

f
(n)
t ,(6.18)

and f (>N)
t is the Duhamel remainder term of order N . We define

t−1 := 0 , tj = s0 + · · · + sj ,(6.19)
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for j = 0, . . . , n, and

R(k0, . . . , kn; z) :=
∫

Rn+1
+

ds0 · · · dsn

( n∏
j=0

e−isj(E(kj)−z)e
iλ

R tj
tj−1

ds′ κs′ (kj)
)
,(6.20)

for z ∈ C.
The n-th order term in the Duhamel expansion is given by

f
(n)
t (p) := (iη)n

∫ t

0

dtn · · ·
∫ t2

0

dt1

∫
dk0 · · · dkn δ(p− k0)(6.21) [ n∏

j=0

Utj−1,tj (kj)
][ n∏

`=1

V̂ω(k` − k`−1)
]
f(kn) .

Expressed in terms of the time increments sj := tj − tj−1,

f
(n)
t (p) = (iη)n

∫
ds0 · · · dsn δ(t−

n∑
j=0

sj)
∫
dk0 · · · dkn δ(p− k0)

[ n∏
j=0

e
−i

R tj
tj−1

ds′(E(kj)−λκs′ (kj))
][ n∏

`=1

V̂ω(k` − k`−1)
]
f(kn) .(6.22)

Expressing the delta distribution δ(t −
∑n

j=0 sj) in terms of its Fourier transform, we
find

f
(n)
t (p) = (iη)n eεt

∫
dα e−itα

∫
dk0 · · · dkn δ(p− k0)

R(k0, . . . , kn;α+ iε)
[ n∏

j=1

V̂ω(kj − kj−1)
]
f(kn) .(6.23)

The above three equivalent expressions for f (n)
t (p) have different advantages in different

contexts, and will all be used in the sequel.
The Duhamel remainder term of order N is given by

f
(>N)
t = iη

∫ t

0

ds Us,t V
(1)
ω f (N)

s .(6.24)

We choose

ε =
1
t

(6.25)

so that the factor eεt in (6.23) remains bounded for all t.
Substituting the truncated Duhamel expansion for a+(ft), a(gt) in (6.11), one ob-

tains

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) ) =
N+1∑

n,en=0

ρ
(n,en)
t (f, g)(6.26)
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where

ρ
(n,en)
t (f, g) := ρ0( a+(f (n)

t ) a(g(en)
t ) ) .(6.27)

If n, ñ ≤ N , we have

E[ρ(n,en)
t (f, g)] = η2n̄

∑
π∈Γn,en

∫ t

0

dtq · · ·
∫ t2

0

dt1

∫ t

0

dθq · · ·
∫ θ2

0

dθ1∫
du0 · · · du2n̄+1 f(u0) g(u2n̄+1) J(un) δ(un − un+1)[ n∏

j=0

Utj−1,tj (uj)
] [ 2n̄+1∏

j=n+1

Uθj−1,θj (uj)
]

(6.28)

E
[ n∏

j=1

V̂ω(uj − uj−1)
2n̄+1∏

j=n+2

V̂ω(uj − uj−1)
]

and using (6.23), this is equivalent to

E[ρ(n,en)
t (f, g)] = η2n̄ e2εt

∑
π∈Γn,en

∫
dα dα̃ eit(α−eα)

∫
du0 · · · du2n̄+1 f(u0) g(u2n̄+1) J(un) δ(un − un+1)

R(u0, . . . , un;α+ iε)R(un+1, . . . , u2n̄+1; α̃− iε)(6.29)

E
[ n∏

j=1

V̂ω(uj − uj−1)
2n̄+1∏

j=n+2

V̂ω(uj − uj−1)
]

where t−1, θ−1 := 0 in (6.28).

§ 6.1. Statement of main results

We introduce macroscopic variables (T,X), related to the microscopic variables
(t, x) by

(T,X) = (ζt, ζx) ,(6.30)

with ζ a real parameter. We will study kinetic scaling limits associated to different
scaling ratios between ζ, η and λ.

The random potential has an average effect on the dynamics of µt by an amount
proportional to its variance, O(η2t), in the time interval [0, t]. Since the strength of the
fermion pair interactions is O(λ), both effects are comparable if λ = O(η2). Accord-
ingly, we distinguis the following scaling regimes.
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6.1.1. The regime λ ≤ Cη2

The interaction between electrons and the effect of the random potential per time
unit is comparable if λ = Cη2.

Theorem 6.1. (T. C., I. Rodnianski, [17]) Assume that λ ≤ O(η2). Then, for
any fixed, finite T > 0, and any choice of test functions f , g,

lim
η→0

lim
L→∞

E[ ρT/η2( a+(f)a(g) ) ] =
∫
dp f(p) g(p)FT (p)(6.31)

holds, where FT (p) satisfies the linear Boltzmann equation

∂TFT (p) = 2π
∫
du δ(E(u) − E(p) ) (FT (u) − FT (p) )(6.32)

with initial condition F0 = µ0.

The Boltzmann equations obtained in the kinetic scaling limit are linear because
the Hartree-Fock interactions cancel, due to translation invariance.
Remarks about the proof. For the proof, we use the nonlinear evolution

Us,t(p) := ei
R t

s
ds′ ( E(p)−λbv∗µs′ )(6.33)

as the reference dynamics, instead of free evolution ei(t−s)E(p) as in previous sections,
and we invoke the Feynman graph expansion in powers of η.

Since the free evolution operator depends on the unknown µt(p), and satisfies a
nonlinear evolution equation, the resolvent calculus used for the problems discussed
previously is unvailable ! Accordingly, the entire analysis in [17] is based on stationary
phase estimates.

The recombination of contributions associated to decorated ladders is much more
difficult for the problem at hand than for the linear problems discussed previously. Our
approach involves a very careful analysis of phase cancellations and stationary phase
effects.

6.1.2. The regime η = o(
√
λ)

In this regime, the limiting distribution is stationary.

Theorem 6.2. (T. C., I. Rodnianski, [17]) Assume that η2 = O(λ1+δ) for
δ > 0 arbitrary. Then, for any fixed, finite T > 0,

lim
λ→0

lim
L→∞

E[ ρT/λ( a+(f) a(g) ) ] =
∫
dp f(p) g(p)FT (p) ,(6.34)
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for arbitrary test functions f , g,, and

∂TFT (p) = 0 ,(6.35)

for F0 = µ0. Accordingly, FT = F0 is stationary.

6.1.3. The regime t = T/η2 and λ = Oη(1)
This regime is very difficult to control, and in [17], we prove a partial result that

highlights some interesting aspects about the problem of determining the kinetic scaling
limit determined by T = η2t and η → 0, with λ small but independent of η. We are
considering, for λ = O(1), the rescaled, formal fixed point equation∫

dp f(p) g(p)µT/η2(p) = G(L)[µ•( • ); η;λ;T ; f, g ]

:= E[ ρT/η2( a+(f)a(g) ) ](6.36)

for µ•( • ). The existence and uniqueness of solutions for this fixed point equation is
currently an open problem. Below, we will make the assumption that there exist limiting
stationary solutions, and determine a their form under this hypothesis.

We base our discussion on the following hypotheses for the case λ = O(1):

(H1) There exist solutions F (η)(T ) := limL→∞ µT/η2 of (6.36), such that the limit
w − limη→0 F

(η)(T ) =: F (T ) = F (0) exists and is stationary.

(H2) The stationary fixed point solution in (H1) satisfies

F (T ) = lim
η→0

lim
L→∞

G(L)[F (η); η;λ;T ; f, g ]

= lim
η→0

lim
L→∞

G(L)[F ; η;λ;T ; f, g ] .(6.37)

The first equality sign here is equivalent to (H1), while the second equality sign
accounts for the assumption that F (η) can be replaced by the limiting fixed point
F before letting η → 0, to produce the same result.

We note that based on the analysis given in [17], we are able to prove hypothesis
(H2) if F (η) = F +O(η2). Error bounds of order O(η2) require more precise estimates
of ”crossing” and ”nesting” terms in the Feynman graph expansion than considered in
this paper, but are available from [27, 28, 29, 30].

Proposition 6.3. Let λ be small but independent of η, and assume that F ∈
L∞(T3) independent of t. Then, the thermodynamic limit

G[F ; η;λ;T ; f, g ] := lim
L→∞

G(L)[F ; η;λ;T ; f, g ](6.38)

exists.
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The proof of this proposition follows straightforwardly from results established in
[13, 14, 16, 34].

Theorem 6.4. (T. C., I. Rodnianski, [17]) Assume that λ ≤ Oη(1), and let

Ẽλ(u) := E(u) + λ( v̂ ∗ F )(u) .(6.39)

We assume that F ∈ L∞(T3) admits the bounds

sup
α

∫
dp

1

|Ẽλ(q) − α− iε|
, sup

q

∫
dα

1

|Ẽλ(q) − α− iε|
≤ C log

1
ε
,(6.40)

and

sup
αi

sup
u∈T3

∫
dq dp

1

|Ẽλ(q) − α1 − iε|
1

|Ẽλ(p) − α2 − iε|
1

|Ẽλ(p± q + u) − α3 − iε|
≤ ε−b(6.41)

for some 0 < b < 1.
Then, F satisfies∫

dp f(p) g(p)F (p) = lim
η→0

G[F ; η;λ;T ; f, g ] ,(6.42)

independent of T , if and only if it satisfies

F (p) = µ0(p) =
1

m̃λ(p)

∫
du δ( Ẽλ(u) − Ẽλ(p) )F (u) ,(6.43)

where

m̃λ(p) := 2π
∫
du δ( Ẽλ(u) − Ẽλ(p) )(6.44)

is the (normalized) measure of the level surface of Ẽλ for the value Ẽλ(p).

We point out the following comments related to Theorem 6.4.

1. The solution of (6.39) corresponds to a renormalized kinetic energy which is shifted
by the average interaction energy for fermion pairs.

2. The fixed point equation (6.43) for F shows that the stationary kinetic limits of µt

are concentrated and equidistributed on level surfaces of the renormalized kinetic
energy function Ẽλ( · ).
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3. The bounds (6.40) and (6.41) correspond to the “crossing estimates” in [13, 34, 27,
39]. They ensure sufficient non-degeneracy of the renormalized energy level surfaces
so that the Feynman graph expansions introduced below are convergent. However,
they do not seem sufficient to prove hypothesis (H2) under the assumption that
(H1) holds.

4. We note that if λ ≤ oη(1), the stationary solutions found in Theorem 6.4 reduce to
those of the linear Boltzmann equation derived in Theorem 6.1.

References

[1] R. Adami, G. Golse, A. Teta, Rigorous derivation of the cubic NLS in dimension one, J.

Stat. Phys. 127, no. 6, 1194–1220 (2007).

[2] M. Aizenman, S. Molchanov, Localization at large disorder and at extreme energies: an

elementary derivation, Commun. Math. Phys. 157, 245–278 (1993).

[3] M. Aizenman, R. Sims, S. Warzel, Absolutely continuous spectra of quantum tree graphs

with weak disorder, Comm. Math. Phys. 264, no. 2, 371–389 (2006).

[4] M. Aizenman, S. Warzel, Localization bounds for multiparticle systems, Comm. Math.

Phys. 290, no. 3, 903–934 (2009).

[5] I. Anapolitanos, I.M. Sigal, The Hartree-von Neumann limit of many body dynamics,

Preprint http://arxiv.org/abs/0904.4514.

[6] W. Aschbacher, V. Jaksic, Y. Pautrat, C.-A. Pillet, Transport properties of quasi-free

fermions, J. Math. Phys. 48, no. 3 (2007)

[7] V. Bach, E.H. Lieb, J.P. Solovej, Generalized Hartree-Fock theory and the Hubbard model,

J. Stat. Phys. 76 (1-2), 3–89 (1994).

[8] D. Benedetto, F. Castella, R. Esposito, M. Pulvirenti, Some considerations on the deriva-

tion of the nonlinear quantum Boltzmann equation, J. Stat. Phys. 116, no. 1-4, 381–410

(2004).

[9] J. Bellissard, Random matrix theory and the Anderson model, J. Statist. Phys. 116, no.

1-4, 739–754 (2004).

[10] J. Bourgain, On random Schrödinger operators on Z2, Discrete Contin. Dyn. Syst. 8, no.

1, 1-15, (2002).

[11] J. Bourgain, Random lattice Schrödinger operators with decaying potential: Some higher

dimensional phenomena, Springer LNM, Vol 1807 (2003), 70-98.

[12] R. Carmona, J. Lacroix, Spectral theory of random Schrödinger operators, Birkhäuser
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