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CLASSICAL RANDOM WALKS have a long history involving
modeling in physics ( Bernoulli (1769), Laplace (1812) , A.
Einstein(1905), P. and T. Ehrenfest (1907), N. Wiener(1922),
Courant-Friedrichs-Lewy (1928)........)

Some of these models come from (or are used in) mathematical
biology, mathematical finances (Bachelier 1900) , network theory,
astronomy, statistical mechanics, solid state physics, polymer
chemistry, biology,....etc, etc...for a very long time
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The interest in QUANTUM WALKS is much more recent. It has
been driven in part by the design of quantum search algorithms and
the general area known as QUANTUM COMPUTING.

QWs "diffuse" faster than CRWs.

In the classical case the expected value of the SQUARE of the
displacement grows like time, whereas in the case of QWs the
typical case is "ballistic behaviour", i.e. the expected value of the
MODULUS of the displacement grows like time.

In the classical case the fluctuations around this mean behaviour is
(typically) given by a Gaussian ( THE CENTRAL LIMIT
THEOREM). In the case of QWs the results are completely
different and largely unexplored. Much more (numerical and
laboratory) experimentation is needed.
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Are there any "real world" reasons to look into quantum
walks??

R. Feynman, Quantum Mechanical Computers, Optics News, 1984.

Y. Aharonov, et. al. , Quantum random walks,
Physical Review A , 1993.

G. Engel, et. al., Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems
Nature, 2007.

A. Peruzzo, et. al. , Quantum walks of correlated photons, Science,
2010.

Kitagawa, Rudner, Berg, Demier, Exploring topological phases with
Quantum walks, Phys. Rev. A, 82, 2010.

S. Hoyer, et. al. , Propagating quantum coherence for biological
advantage, arXiv June 2011
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People working on Quantum walks, starting with Y. Aharonov et.al.
( Phys. Rev, A,1993) have used either "path counting" methods or
Fourier methods. In the first case it is a good idea to be Dick
Feynman, in the second case you are restricted to translation
invariant situations.

The idea of using spectral methods was proposed in
M.J. Cantero, F. A. Grünbaum, L. Moral, L. Velázquez, Matrix
valued Szegö polynomials and quantum random walks,
quant-ph/0901.2244,

Comm. Pure and Applied Math, vol. LXIII, pp 464–507, 2010.
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With the more recent work on recurrence we find that many of the
tools of probability, operator theory, complex analysis, OPUC, can
be used as tools to discover new phenomena for quantum walks,
which apparently had not been noticed so far.
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This new method has been applied by us and other people to study
localization, etc.

Konno, N. and Segawa, E. , Localization of discrete time quantum
walks on a half line via the CGMV method, Quantum Information
and computation, vol 11, pp 485–495 (2011).

Konno, N. and Segawa, E. ,One dimensional quantum walks via
generating functions and the CGMV method, arXiv May 2013.

There are also some new results, specially on recurrence by

Recurrence for discrete time unitary evolutons.

F. A. Grünbaum, L. Velázquez, R. Werner and A. Werner (Comm.
Math. Physics 2013)
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as well as in the more recent paper

QUANTUM SUBSPACE RECURRENCE AND SCHUR
FUNCTIONS

J. Bourgain, F.A. Grünbaum, L. Velazquez and J. Wilkening, arXiv
2013. to appear in Comm. Math. Physics 2014
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I will describe a way of constructing a Quantum walk with discrete
time out of a UNITARY OPERATOR and an initial state.

The main tools are the so called CMV matrices and certain pieces
of very classical complex and harmonic analysis from the 1910-1920
period.
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A quick review of CMV matrices

Let dµ(z) be a probability measure on the unit circle
T = {z ∈ C : |z | = 1}, and L2

µ(T) the Hilbert space of
µ-square-integrable functions with inner product

(f , g) =

∫
T
f (z) g(z) dµ(z).

For simplicity we assume that the support of µ contains an infinite
number of points.
A very natural UNITARY operator to consider in our Hilbert space
is given by multiplication by z .
Since the Laurent polynomials are dense in L2

µ(T), a natural basis
to obtain a matrix representation of Uµ is given by the Laurent
polynomials (χj)

∞
j=0 obtained from the Gram–Schmidt

orthonormalizalization of {1, z , z−1, z2, z−2, . . . } in L2
µ(T).
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The matrix C = (χj , zχk)∞j ,k=0 of Uµ with respect to (χj)
∞
j=0 has

the form

C =



α0 ρ0α1 ρ0ρ1 0 0 0 0 . . .
ρ0 −α0α1 −α0ρ1 0 0 0 0 . . .
0 ρ1α2 −α1α2 ρ2α3 ρ2ρ3 0 0 . . .
0 ρ1ρ2 −α1ρ2 −α2α3 −α2ρ3 0 0 . . .
0 0 0 ρ3α4 −α3α4 ρ4α5 ρ4ρ5 . . .
0 0 0 ρ3ρ4 −α3ρ4 −α4α5 −α4ρ5 . . .
. . . . . . . . . . . . . . . . . . . . . . . .


,

(1)
where ρj =

√
1− |αj |2 and (αj)

∞
j=0 is a sequence of complex

numbers such that |αj | < 1. The coefficients αj are known as the
Verblunsky (or Schur, or Szegő, or reflection) parameters of the
measure µ, and establish a bijection between the probability
measures supported on an infinite set of the unit circle and
sequences of points in the open unit disk.
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Some pieces of very classical analysis that are useful to study
quantum walks (if you want to use the spectral method).
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An important tool is the Carathéodory function F of the
orthogonality measure µ, defined by

F (z) =

∫
T

t + z
t − z

dµ(t), |z | < 1. (2)

F is analytic on the open unit disc with Taylor series

F (z) = 1 + 2
∞∑
j=1

µjz
j , µj =

∫
T
z jdµ(z), (3)

whose coefficients provide the moments µj of the measure µ.
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Another tool in the theory of OP on the unit circle is the so called
Schur function related to F (z) and thus to µ, by

f (z) = z−1(F (z)− 1)(F (z) + 1)−1, |z | < 1.

we have

F (z) = (1 + zf (z))(1− zf (z))−1, |z | < 1.

Just as F (z) maps the unit disk to the right half plane, f (z) maps
the unit disk to itself.
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Both the measure and the Schur function are univocally determined
by the Verblunsky coefficients.
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A very important fact is that f (z) is INNER, i.e. the limiting values
of its modulus on the unit circle are 1, exactly when µ has zero
density with respect to Lebesgue measure, i.e. is purely singular. In
this case µ can have a singular continuous part and maybe point
masses.
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Now we construct a large class of QWs, starting in each case with a
CMV matrix.

We choose to order the pure states of our system as follows

|0〉 ⊗ |↑〉, |0〉 ⊗ |↓〉, |1〉 ⊗ |↑〉, |1〉 ⊗ |↓〉, . . .

and we will describe a way of prescribing a transition mechanism
giving rise to a unitary matrix U.
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We give a transition mechanism for an arbitrary CMV matrix as
above. More explicitly, we allow for the following dynamics with
four possible transitions

|i〉 ⊗ |↑〉 −→


|i + 1〉 ⊗ |↑〉 with amplitude ρi+2ρi+3

|i − 1〉 ⊗ |↓〉 with amplitude ρi+1αi+2

|i〉 ⊗ |↑〉 with amplitude − αi+1αi+2

|i〉 ⊗ |↓〉 with amplitude ρi+2αi+3

|i〉 ⊗ |↓〉 −→


|i + 1〉 ⊗ |↑〉 with amplitude − αi+2ρi+3

|i − 1〉 ⊗ |↓〉 with amplitude ρi+1ρi+2

|i〉 ⊗ |↑〉 with amplitude − αi+1ρi+2

|i〉 ⊗ |↓〉 with amplitude − αi+2αi+3
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The expressions for the amplitudes above are valid for i even. If i is
odd then in every amplitude the index i needs to be replaced by
i − 1.

To get a traditional QW’s (as those going with a COIN) we need to
assume that the ODD Verblunsky coefficients VANISH.

In terms of the function F (z) introduced above this means that

F (z)F (−z) = 1.

In terms of the Schur function f (z) - to be introduced below- this

means that f (z) is EVEN.
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For the traditional QW on the integers a spin located at site i and
pointing up can go to the left and flip orientation with amplitude
c i
21 or go to the right while keeping its orientation with amplitude
c i
11. There are also amplitudes for transitions involving a spin
pointing down, so that we have the following allowed transitions

|i〉 ⊗ |↑〉 −→

{
|i + 1〉 ⊗ |↑〉 with probability amplitude c i

11

|i − 1〉 ⊗ |↓〉 with probability amplitude c i
21

|i〉 ⊗ |↓〉 −→

{
|i + 1〉 ⊗ |↑〉 with probability amplitude c i

12

|i − 1〉 ⊗ |↓〉 with probability amplitude c i
22

where, for each i ∈ Z,

Ci =

(
c i
11 c i

12
c i
21 c i

22

)
(4)

is an arbitrary unitary matrix which one calls the i th coin.
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People that work with "coined quantum walks" use the special case
described above.

A famous important case is described below.
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Examples of QWs with a constant coin
The Hadamard QW is an example of the QWs described previously.
It corresponds to a constant coin Ci = H given by

H =
1√
2

(
1 1
1 −1

)
. (5)

The Hadamard QW is an example of an unbiased QW, i.e., a QW
with a constant coin such that all the allowed transitions are
equiprobable.
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An analog of the Karlin McGregor formula for the
quantum case, yielding probability amplitudes, i.e.
the main point of CGMV

The KMcG formula looks as follows

(Un)j ,k =

∫
T
znX j(z)dµ(z)X k(z)†,

The quantities X j(z) are the orthogonal Laurent-Szegö
polynomials.

There are scalar as well as block versions of this formula, just as in
the classical case. The scalar case appears for walks on the
non-negative integers and the block version is needed for the case
of walks on the integers.
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It is important to notice that we have a way of computing
AMPLITUDES and that getting probabilities requires recalling the
rules of QM.

For example, given a QW on Z or Z+, we define p(k)α,β(n) ,i.e. the
probability that the walker gets to the site k in n steps having
started at the state |Ψ(0)

α,β〉 = α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 at the initial
time, and this is computed as follows

p(k)α,β(n) = |〈Ψ(k)
1,0 |U

n|Ψ(0)
α,β〉|

2 + |〈Ψ(k)
0,1 |U

n|Ψ(0)
α,β〉|

2.

where U is the transition operator of the QW.
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Assume, for simplicity, that we start at the origin, in a state given
by the initial state α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 and we denote with Xn
the site k at time n. The possible values of k will go from −n to n
in the case of the integers and from 0 to n for the non-negative
integers.

A topic of interest is then the study of the quantity

Prob{γ ≤ Xn/n ≤ δ}

In very few cases the limiting density for this distribution function is
known.

The shape of this distribution can depend heavily on the initial
state. This analysis is much more elaborate than in the classical
case, and some examples will appear later.
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In the classical case one would scale Xn not by n, but by its square
root.
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Consider a quantum case, first in the case of all the integers, and
ask what is the analog of the Gaussian?

We will do this in the case of the Hadamard walk.

I will show the results of a computation using the appropriate CMV
matrix. All the plots are obtained by using the relevant CMV
matrix and all computations are done in exact arithmetic.

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



Hadamard QW on the integers, initial state
α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 , with α = 1, β = i , normalized
800 iterations
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Hadamard QW on the integers initial state
α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 , with α = 1, β = 0, normalized
200 iterations

0 0.25 0.5 0.75

0.025

0.05

0.075

y

x

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



Hadamard QW on the non-negative integers initial state
α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 , with α = 1, β = 0, i.e. one spin
up at the origin
800 iterations
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Hadamard QW on the non-negative integers initial state
α|0〉 ⊗ |↑〉+ β|0〉 ⊗ |↓〉 , with α = 1, β = 1, normalized
800 iterations
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The QW of F. Riesz

The measure on the unit circle that F. Riesz built is formally given
by the expression

dµ(z) =
1
2π

∞∏
k=1

(1 + cos(4kθ))dθ =
1
2π

∞∏
k=1

(1 + (z4k
+ z−4k

)/2)dz/(iz)

= (
∞∑

j=−∞
µjz

j)dz/(iz)

Here z = e iθ.
If one truncates this infinite product the corresponding measure has
a nice density. These approximations converge weakly to the Riesz
measure, with vanishing density and no point masses, a Cantor like
measure. We are dealing with a singular continuous measure.

I have started my product from k = 1, as in Barry’s book, as well
as in other references. F. Riesz started with k = 0. Each choice has
its own advantages.
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To do any computations with the Riesz walk we need to have its
Schur, or Szegö or Veblunsky coefficients denoted by αj .

After extensive computation in exact arithmetic I have an ansatz
for them (but no complete proof). This is used in all the
computations behind the plots that appear later.
The QW of F. Riesz, Grünbaum and Velazquez, arXiv 1111.6630 in
Proceedings of FoCAM, Budapest 2011.

How do the previous plots of the distribution of Xn/n look in the
case of Riesz?
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Riesz’ QW, initial state: a spin up at the origin
800 iterations, starting the product with k = 1
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Before going much further, recall...

ANYONE THAT HAS NOT BEEN SHOCKED BY QUANTUM
MECHANICS HAS NOT UNDERSTOOD IT

Niels Bohr
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The entire discussion of recurrence properties for a given state φ,
will depend only on the scalar measure µ(du) = 〈φ|E (du)φ〉 on the
unit circle, which is obtained from the projection valued spectral
measure E of U.

The moments of the scalar valued measure µ, i.e. its Fourier
coefficients

µn =

∫
µ(du) un = 〈φ|Unφ〉, n ∈ Z. (6)

have a nice dynamical interpretation (going all the way to
Heisenberg and Born) : they give the amplitudes of a return to φ
in n units of time. The probabilities pn will be the moduli squared
of these amplitudes.
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Back to the discussion of recurrence in the quantum case.

We consider quantum dynamical systems specified by a unitary
operator U

and an initial state vector φ.

Any statement we make applies to the pair (U, φ)

In each step the unitary is followed by a PROJECTIVE
MEASUREMENT checking whether the system has returned to
the initial state. We call the system recurrent if this eventually
happens with probability one.
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GVWW recurrence

Ũ = (1I− |φ〉〈φ|)U. (7)

ffn = 〈φ|UŨn−1φ〉, n ≥ 1. (8)

The quantity ffn is the amplitude for a FIRST return to φ in n units
of time.
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The total probability for events up to and including the nth step,
i.e., detection (back at the initial state) at step k ≤ n or survival
away from the initial state, thus adds up as

1 =
n∑

k=1

|ffk |2 + ‖Ũnφ‖2.

The return probability is therefore

R =
∞∑

n=1

|ffn|2 = 1− lim
n→∞

‖Ũnφ‖2. (9)

Accordingly, we call the pair (U, φ) recurrent if R = 1, and
transient otherwise.
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We use the moment generating or Stieltjes function

µ̂(z) =
∞∑

n=0

µnzn =

∫
µ(dt)

1− tz
, (10)
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We get

â(z) =
∞∑

n=1

ffnzn =
∞∑

n=0

〈φ|UŨnφ〉zn+1

=
µ̂(z)− 1
µ̂(z)

(11)

= z f (z). (12)

That is, the Schur function is essentially the generating
function for the first arrival amplitudes.
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The dynamical interpretation of the Taylor coefficients of the Schur
function is the source of many nice games.

This is an expression I would love to be able to share with I. Schur
and R. Feynman

µn = ffn + ffn−1µ1 + · · ·+ ff1µn−1

This is a quantum analog of the renewal equation that one has in
the classical case, but now probabilities have been replaced by
amplitudes.
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For a recurrent state the expected value for the
first return time is always a non-negative integer
(or infinity): a topological interpretation in terms
of the Schur function
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Assume recurrence, i.e. f (z) is inner

τ =
∞∑

n=1

|ffn|2 n. (13)

g(t) = e it f (e it) =
∞∑

n=1

ffne int (14)

has modulus one for all real t. So g(t) winds around the origin an
integer number w(g) of times as t goes from 0 to 2π. Integrating
over one period t ∈ [0, 2π], we get 2πw(g), so

w(g) =
1
2π

∫ 2π

0
dt g(t)

1
i
∂tg(t) =

∞∑
n=0

ffn (nffn) = τ. (15)
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a first summary

The first return probabilities in our approach are the squared
moduli of the Taylor coefficients of the so-called Schur function of
the measure, which so far did not seem to have a direct dynamical
interpretation.

Our main result is that the process is recurrent iff the Schur
function is “inner”, i.e., has modulus one on the unit circle.

Furthermore, we show that the winding number of this function has
the direct interpretation as the expected time of first arrival, which
is hence an integer ( or plus infinity).
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There are extensions of all the notions above, including the renewal
equation, topological interpretations, etc.... in the case when one
considers SITE to SITE recurrence, ignoring the value of the spin.

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



The notion of monitored recurrence for discrete-time quantum
processes taking the initial state as an absorbing state is extended
to absorbing subspaces of arbitrary finite dimension.

The generating function approach leads to a connection with the
well-known theory of operator-valued Schur functions. This is the
cornerstone of a spectral characterization of subspace recurrence.

The spectral decomposition of the unitary step operator driving the
evolution yields a spectral measure, which we project onto the
subspace to obtain a new spectral measure that is purely singular iff
the subspace is recurrent, and consists of a pure point spectrum
with a finite number of masses precisely when all states in the
subspace have a finite expected return time.
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This notion of subspace recurrence also links the concept of
expected return time to an Aharonov-Anandan phase that, in
contrast to the case of state recurrence, can be non-integer. Even
more surprising is the fact that averaging such geometrical phases
over the absorbing subspace yields an integer with a topological
meaning, so that the averaged expected return time is always a
rational number. Moreover, state recurrence can occasionally give
higher return probabilities than subspace recurrence, a fact that
reveals once more the counterintuitive behavior of quantum
systems.
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In particular, if V is recurrent and its inner Schur function f (z) has
an analytic extension to a neighborhood of the closed unit disk,
e.g. if f (z) is a rational inner function, then we can write

τ(ψ) =

∫ 2π

0
〈ψ(θ)|∂θψ(θ)〉 dθ

2πi
, ψ(θ) = â(e iθ)ψ, (16)

where ψ(θ), θ ∈ [0, 2π], traces out a closed curve on the sphere SV
due to the unitarity of â(e iθ). This simple result has a nice
interpretation since it relates τ(ψ) to a kind of Berry’s
geometrical phase . More precisely, the expected V -return time
of a state ψ ∈ SV is −1/2π times the Aharonov-Anandan phase
associated with the loop â(e iθ)ψ : S1 → SV .
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In the case of state recurrence, one proves that the states ψ with a
finite expected return time are characterized by a finitely supported
spectral measure µψ(dλ), thus by a rational inner Schur function
fψ(z). Further, one also finds that τ(ψ) must be a positive integer
whenever it is finite because of its topological meaning: τ(ψ) is the
winding number of âψ(e iθ) : S1 → S1, where âψ(z) = zfψ(z) is the
first return generating function of ψ.
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In contrast to a winding number, the Aharonov-Anandan phase is
not necessarily an integer because it reflects a geometric rather
than a topological property of a closed curve. The expression above
for τ(ψ) is reparametrization invariant, and changes by an integer
under closed S1 gauge transformations ψ(θ)→ ψ̃(θ) = e iς(θ)ψ(θ),
ψ̃(2π) = ψ̃(0). This means that τ(ψ) is a geometric property of
the unparametrized image of ψ(θ) in SV , while e i2πτ(ψ) is a
geometric property of the corresponding closed curve in the
projective space of rays of SV whose elements are the true physical
states of V . In fancier language, SV is a fiber bundle over such a
projective space with structure group S1, and e−i2πτ(ψ) is the
holonomy transformation associated with the usual connection
given by the parallel transport defined by 〈ψ(t)|∂tψ(t)〉 = 0.

As a consequence, we cannot expect for τ(ψ) to be an integer for
subspaces V of dimension greater than one.
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The following theorem characterizes the subspaces V with a finite
averaged expected V -return time and gives a formula for this
average.
It can be considered as the extension to subspaces of the results
given earlier.
A key ingredient will be the determinant detT of an operator T on
V , that is, the determinant of any matrix representation of T .
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Consider a unitary step U and a finite-dimensional subspace V with
spectral measure µ(dλ), Schur function f (z) and first V -return
generating function â(z) = zf †(z). Then, the following statements
are equivalent:
1. All the states of V are V -recurrent with a finite expected

V -return time.
2. All the states of V are recurrent with a finite expected return

time.
3. µ(dλ) is a sum of finitely many mass points.
4. f (z) is rational inner.
5. det f (z) is rational inner.
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Under any of these conditions, the average of the expected
V -return time is

SV τ(ψ) dψ =
K

dimV
with K a positive integer that can be computed equivalently as

K =
∑
k

dim(EkV ) =
∑
k

rankµ({λk}) = deg det â(e iθ), (17)

where λk are the mass points of µ(dλ), Ek = E ({λk}) are the
orthogonal projectors onto the corresponding eigenspaces of
U =

∫
λE (dλ) and deg det â(e iθ) is the degree of

det â(e iθ) : S1 → S1, i.e. its winding number, which coincides
with the number of the zeros of det â(z) inside the unit disk,
counting multiplicity.
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Let us go back to the statement of Niels Bohr.
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An example of a Quantum walk in the spirit of N. Bohr.

Take for measure on the circle the one with density 1 + cos(θ)
(normalized).

Its Verblunsky coefficients are αi = (−1)i/(i + 2).

The probability (amplitude) of returning to the initial state |0〉 ⊗ |↑〉
in n steps is 1 for n = 0, it is given by 1/2 for n = 1, and equals
ZERO for all values of n = 2, 3, 4, ...

The probability (amplitude) of returning to that same state FOR
THE FIRST TIME at time n vanishes for n = 0 and for
n = 1, 2, 3, ... is given by −(−1/2)n.
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The probability of eventually returning is 1/3 and the expected
time to return (restricted to the case when the walk returns) is
given by 4/9.
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The graphs going with first return amplitudes
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with amplitudes given respectively by (the complex conjugates of
the expressions)

a1 = α0,

a2 = ρ2
0α1,

a3 = ρ2
0(α2ρ

2
1 − α0α

2
1),

and finally for loops of length 4 we get the amplitude

a4 = ρ2
0(α3ρ

2
1ρ

2
2 − α1α

2
2ρ

2
1 − 2α1α2α0ρ

2
1 + α3

1α
2
0).
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One can get another set of examples that might amuse N. Bohr:

one can arrange that the probabilities of a FIRST RETURN in n
STEPS be non-zero only for n = 1, 2 while the probability of a
RETURN in n STEPS is never zero.

For instance we can have the common value 1/2 for the first return
amplitudes (n = 1, 2) and a vanishing value for higher times, and
the value µn = 2/3 + (1/3)(−1/2)n for the return amplitudes
(n = 0, 1, 2, 3, ....).

The corresponding Verblunsky coefficients are α0 = 1/2 followed by
αi = 2/(2i + 1) for i = 1, 2, 3, ...

The measure in question is a delta of strength 2/3 at θ = 0 plus
the density 1/(5 + 4cos(θ)).

This example will be SJK recurrent but not GVWW recurrent.
The probability of returning to the initial state is 1/4 + 1/4 = 1/2
and the (restricted) expected time for this return is 3/4.
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THE RELATION BETWEEN STATE RECURRENCE and
SUBSPACE RECURRENCE, in the spirit of N. Bohr
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Consider the walk in the non-negative integers with a constant coin
given by

C =

( √
c

√
1− c√

1− c −
√
c

)
(18)
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Comparing two probabilities as a function of the initial state
cos t |0〉 ⊗ |↑〉 +sin t |0〉 ⊗ |↓〉
Constant coin in the non-negative integers, c = 6/10

state recurrence probability
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Comparing two probabilities as a function of the initial state
cos t |0〉 ⊗ |↑〉 +sin t |0〉 ⊗ |↓〉
Constant coin in the non-negative integers, c = 6/10
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Now for the same coin on the integers.
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Comparing state and site return probabilities for the one
dimensional case as a function of t
Using complex combinations
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An important point:
One can use the CGMV technology to study (at least some) higher
dimensional walks.

This is illustrated below in the case of some well known two
dimensional walks.
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The next plot involves the 2 dim Grover walk on the square lattice.

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



state
dim 2
dim 3
state

0 0.25 0.5 0.75

0.36

0.38

0.4

0.42

0.44

0.46

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



discrete1
discrete2
discrete3
discrete4

0 0.25 0.5 0.75

0.2

0.24

0.28

0.32

0.36

0.4

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



state
dim 2
dim 3
state

0 0.25 0.5 0.75
0.2

0.24

0.28

0.32

0.36

0.4

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



Now the Fourier walk, i.e. the unitary is the DFT for M=4, but the
initial state is a combination of spin east, spin north and the third
dimension is a combination of spin west and spin south

The details of the different four choices are in the next slide.

The value of s is (as usual) s = π/4.

The value of N is N = 120.

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



discrete1
discrete2
discrete3
discrete4

0 0.25 0.5 0.75

0.2

0.24

0.28

0.32

0.36

0.4

0.44

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



discrete1
discrete2
discrete3
discrete4

0 0.25 0.5 0.75

0.2

0.24

0.28

0.32

0.36

0.4

0.44

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



discrete1
discrete2
discrete3
discrete4

0 0.25 0.5 0.75

0.2

0.24

0.28

0.32

0.36

0.4

0.44

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



discrete1
discrete2
discrete3
discrete4

0 0.25 0.5 0.75

0.2

0.24

0.28

0.32

0.36

0.4

0.44

Figure: haha

labelpayoffgraph

F. Alberto Grünbaum Spectral methods for Quantum walks, ( aka Discrete time unitary evolutions)



The next 4 Fourier two dimensional walks are the same as the ones
above, BUT N = 80 and the legends are ok.
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Here is one example on an HEXAGONAL LATTICE, the coin is
the DFT3.

The value of N is N = 30 and the initial state is given by

1/sqrt(2)cost[1, 0, (1 + i)/sqrt(2)] + isint[0, 1, 0]
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With the same crazy state as in the previous hexagonal case, we do
Grover.

We choose N = 60.
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