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Quantum statistics

Single particle space configuration space X .
Two particle statistics - alternative approaches:

Quantize X×2 and restrict Hilbert space to the symmetric or
anti-symmetric subspace.

ψ(x1, x2) = ±ψ(x2, x1) (1)

Bose-Einstein/Fermi-Dirac statistics.

(Leinaas and Myrheim ‘77)
Treat particles as indistinguishable, ψ(x1, x2) ≡ ψ(x2, x1).
Quantize two particle configuration space.
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Definition

Configuration space of n indistinguishable particles in X ,

Cn(X ) = (X×n −∆n)/Sn

where ∆n = {x1, . . . , xn|xi = xj for some i 6= j}.

1st homology groups of Cn(Rd):

H1(Cn(Rd)) = Z2 for d ≥ 3.
2 abelian irreps. corresponding to Bose-Einstein &
Fermi-Dirac statistics.

H1(Cn(R2)) = Z
Any single phase eiθ can be associated to every primitive
exchange path – anyon statistics.

H1(Cn(R)) = 1
particles cannot be exchanged.
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What happens on a graph where the
underlying space has arbitrarily complex

topology?
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Graph connectivity

Given a connected graph Γ a k-cut is a set of k vertices whose
removal makes Γ disconnected.

Γ is k-connected if the minimal cut is size k .

Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

u

v

Two cut
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Graph connectivity

Given a connected graph Γ a k-cut is a set of k vertices whose
removal makes Γ disconnected.

Γ is k-connected if the minimal cut is size k .

Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

u

v

Two independent paths joining u and v .
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Features of graph statistics

On 3-connected graphs statistics only depend on whether the
graph is planar (Anyons) or non-planar (Bosons/Fermions).

A two dimensional lattice with a small section that is non-planar is
locally planar but has Bose/Fermi statistics.
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On 2-connected graphs statistics are independent of the number of
particles.

F B F B F

For example, one could construct a chain of 3-connected
non-planar components where particles behave with alternating
Bose/Fermi statistics.
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On 1-connected graphs the statistics depends on the no. of
particles n.

Example, star with E edges.

no. of anyon phases(
n + E − 2

E − 1

)
(E − 2)−

(
n + E − 2

E − 2

)
+ 1 .

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

On 1-connected graphs the statistics depends on the no. of
particles n.
Example, star with E edges.

no. of anyon phases(
n + E − 2

E − 1

)
(E − 2)−

(
n + E − 2

E − 2

)
+ 1 .

Jon Harrison quantum statistics on graphs



Quantum statistics
Statistics on graphs
3-connected graphs

1st homology group of graph

By the structure theorem for finitely generated modules
(for a suitably subdivided graph Γ)

H1(Cn(Γ)) = Zk ⊕ Zn1 ⊕ . . .⊕ Znl , (2)

where ni |ni+1.

So H1(Cn(Γ)) is determined by k free (anyon) phases {φ1, . . . , φk}
and l discrete phases {ψ1, . . . , ψl} such that for each i ∈ {1, . . . l}

niψi = 0 mod 2π, ni ∈ N and ni |ni+1 . (3)
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Basic cases

For 2 particles.

1 2

3

(12) (23)

(13)

3

2

4

1

(12)

(13) (23)

(34)

(24)(14)

Exchange of 2 particles
around loop c; one free
phase φc2.

Exchange of 2 particles
at Y-junction; one free
phase φY .

Γ C2(Γ)
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Lasso graph

3

2

4

1

(12)

(13) (23)

(34)

(24)(14)

Identify three 2-particle cycles:

(i) Rotate both particles around loop c ; phase φc,2.

(ii) Exchange particles on Y-subgraph; phase φY .

(iii) Rotate one particle around loop c other particle at vertex 1;
(1, 2)→ (1, 3)→ (1, 4)→ (1, 2), phase φ1

c,1.

Relation from contactable 2-cell φc,2 = φ1
c,1 + φY .
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Let c be a loop. What is the relation between φuc,1 and φvc,1?

(a) u and v joined by path disjoint with c.
φuc,1 = φvc,1 as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.
Two lasso graphs so φc,2 = φuc,1 + φY1 & φc,2 = φvc,1 + φY2 .
Hence φuc,1 − φvc,1 = φY2 − φY1 .

Y1

u

Y2

v

(a)

c Y1

u

Y2

v

(b)

c

Relations between phases involving c encoded in phases φY .
H1(C2(Γ)) = Zβ1(Γ) ⊕ A, where A determined by Y-cycles.

In (a) we have a B subgraph & using (b) also φY1 = φY2 .
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3-connected graphs

The prototypical 3-connected graph is a wheel W k .

W 5

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then
for some edge e ∈ Γ either Γ \ e or Γ/e is simple and 3-connected.

Γ \ e is Γ with the edge e removed.

Γ/e is Γ with e contracted to identify its vertices.
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Lemma

For 3-connected simple graphs all phases φY are equal up to a sign.

Sketch proof. The lemma holds on K4 (minimal wheel). By wheel
thm we only need to show that adding an edge or expanding a
vertex any new phases φY are the same as the original phase.
Adding an edge: Γ ∪ e

Γ

e

Using 3-connectedness identify independent paths in Γ to make B.
Then φY = φY .
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Theorem

For a 3-connected simple graph, H1(C2(Γ)) = Zβ1(Γ) ⊕ A, where
A = Z2 for non-planar graphs and A = Z for planar graphs.

Proof.

For K5 and K3,3 every phase φY = 0 or π. By Kuratowski’s
theorem a non-planar graph contains a subgraph which is
isomorphic to K5 or K3,3.

For planar graphs the anyon phase can be introduced by
drawing the graph in the plane and integrating the anyon
vector potential α

2π ẑ × r1−r2
|r1−r2|2 along the edges of the

two-particle graph, where r1 and r2 are the positions of the
particles.
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Summary

Full classification of abelian quantum statistics on graphs by
decomposing graph in 1-, 2- and 3-connected components.

Physical insight into dependance of statistics on graph
connectivity.

Interesting new features of graph statistics.

Statistics incorporated in gauge potential.
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