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Main Question

Can we turn the process of discovery of a scalable
numerical method into a UQ problem and, to some
degree, solve it as such in an automated fashion?

Can we use a computer, not only to implement a
numerical method but also to find the method itself?



Problem: Find a method for solving (1)
as fast as possible to a given accuracy

—div(aVu) =g, x € (),
u=0, =z,

QCRY 00 is piec. Lip.

(1)

a unif. ell. loggo(a)
Q; j - LOO(Q)




Multigrid Methods
Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 197§]

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

Rm

 Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness



Robust/Algebraic multigrid

[Mandel et al., 1999, Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008|, [Ruge-Stiiben, 1987
[Panayot - 2010]

Stabilized Hierarchical bases, Multilevel preconditioners
Vassilevski - Wang, 1997, 1998
Panayot - Vassilevski, 1997]

(Chow - Vassilevski, 2003]
Aksoylu- Holst, 2010]

« Some degree of robustness but problem
remains open with rough coefficients
Why? Interpolation operators are unknown

Don’'t know how to bridge scales with rough
coefficients!



Low Rank Matrix Decomposition methods

Fast Multipole Method: |Greengard and Rokhlin, 1987]
Hierarchical Matrix Method: [Hackbusch et al., 2002]
'Bebendorf, 2008|:

NIn®™ N complexity




Common theme between these methods

Their process of discovery is based on intuition,
brilliant insight, and guesswork




Answer: YES Compute fast

!

Play adversarial “ Compute with
Information game

$

partial information

ldentify game

|Owhadi 2015, Multi-grid with rough coefﬁcients
and Multiresolution PDE decomposition from
Hierarchical Information Games, arXiv:1503.03467]

Resulting method:  |N In® N complexity

This Is a theorem



g div(aVu) = g in €2,
u = 0 on 0,

Resulting method: \

H& (Q) = wh e, wDe, ---q, WE @,

<, x >ai= [o(V)TaVy =0 for (¢, x) € WD x WU § £ j

Theorem For v € 95(F)

C1 < |v]]a < C2
[ div(aVv)|lp2q) — 2k

[v]|2 :=<v,v >q= [,(Vv)'aVu

Looks like an eigenspace decomposition



u=w +w®® .o k) ..

w*) = F.E. sol. of PDE in 25*)
Can be computed independently

B(k). Stiffness matrix of PDE in 25(%)

Amax (B*))

\ 4

Just relax in 0% to find w(*)

Quacks like an eigenspace decomposition

Theorem




Multiresolution decomposition of solution space
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Solve time-discretized wave equation (implicit time steps
with rough coefficients in O(N In? N)-complexity

Swims like an eigenspace decomposition



U: F.E. space of Hy(Q) of dim. N

Theorem The decomposition

v =020WUg¢ wDag, .. ¢, 0

Can be performed and stored in

O(N In® N) operations

Doesn’t have the complexity of an eigenspace decomposition



Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator
and locally analyze the solution space



u

Inverse Problem O, c R™

R™S u,,-
Numerical implementation requires
computation with partial information.

D1, Om € L*(Q)
Uy, = (fQ ¢1u7 SO fQ ¢mu)

Uy € R™ Missing information = H& (Q)




Discovery process

Identify underlying
Information game

Measurement functions: ¢1, . o

Player A

Chooses
g€ L*(Q

\

—div(aVu) = g in ©Q,

u = 0 on 0,

. Om € L(Q)

Player B

s Jo udm
Chooses u* € L?(Q)

HgHLQ(Q) < 1 \ /

Sees [, ug1, ..

Qa

I£1I2 = Jo(VH) aV f



Deterministic zero sum game

Player B

Player A’s payoff

Player A & B both have a blue and a red marble
At the same time, they show each other a marble

How should A & B play the (repeated) game?



Optimal strategies Game theory
are mixed strategies

Player B
Optimal way to
play is at random q@® @1 - q

P@
Player A
l-pe S
A’s expected payoft John Nash

=3pq+ (1 —p)(1 —q) —2p(1 — q) — 2¢(1 — p)
=1—3q + p(8q — 3) :_% forng



Player A Player B
Chooses

g€ L2(Q) Sees fQ ud, ..., fQ U,
lgllz2g) < 1 Chooses u* € L*(Q)

NS

Hu—u*

a

Continuous game but as in decision theory
under compactness it can be approximated
by a finite game

Abraham Wald

The best strategy for A is to play at random

Player B's best strategy live
In the Bayesian class of estimators



Player B’s class of mixed strategies

Pretend that player A is choosing g at random

ge L*(Q) <= ¢ Random field

[ div(aVu) = in €}, [ d; — £ ]
< ( ) =g — div(aVv) = £ in €,

u = 0 on 0, v = 0 on 011,

\ \

Player B's bet

u(z) = Elv(z)| [ v(y)di(y) dy = [ uly)ei(y) dy, Vil

Player’s B optimal strategy?

Player B’s best bet? <ms) min max problem
over distribution of &




Computational efficiency mmp ‘f ~ _/\[((),I’)‘
\ 4

Elementary gambles form deterministic
basis functions for player B’s bet

Theorem <t

u* () =30 Yilx) Jo ul Y o

Gamblets

Y;: Elementary gambles/bets
Player B’s bet if fQ up; =0;4,J =1,.

%(513) ‘= EENN(O,F) [U($)| fQ v(y)¢] (y) dy — 5i,j7 .] < {17 IR




What are these gamblets? Depend On

e I': Covariance function of £ (Player B’s decision)

e (¢;)",: Measurements functions (rules of the game)

[Owhadi, 2014]
Example , x:..1406.6665

['(z,y) =d(z —y)
¢i(r) = 0(x — ;)

a = [; e==p q),: Polyharmonic splines
‘Harder-Desmarais, 1972] [Duchon 1976, 1977,1978]

a; ; € L>(Q)) 4= 1;: Rough Polyharmonic splines
'Owhadi-Zhang-Berlyand 2013]



What is Player B's best strategy?

What is Player B’s best choice for

['(z,y) =E[&(z)E(y)] ?

[ — [|e= Jat@sds~aos)
I IfII7 == Jo (V) aVf

L =—div(aV-)

Why? == gSee algebraic generalization



The recovery is optimal (Galerkin projection)

Theorem IfI' = L then
u*(z) is the F.E. solution of (1) in span{L~t¢;|li = 1,...,m}

Hu — U*Ha, — inf@béspan{ﬁ_lqbi:iE{l,...,m}} Hu — wua

L=—div(aV")

<( —div(aVu) = g, r €,
(1) u=0, x¢€ 0,

\




Optimal variational properties
Theorem

> 1w, minimizes ¢4

over all ¢ such that |, ¢;9 =w; for j=1,...

Variational characterization

Theorem 1);: Unique minimizer of

‘Minimize |||,

<
| Subject to ¢ € Hij(Q)and [, ;9 =10;;, j=1,...



Selection of measurement functions

Example [ndicator functions of a
Partition of €2 of resolution H

!

Theorem lu —uf|q < Amf(a) HgHLQ(Q)




Elementary gamble

% Your best bet on the value of u

given the information that

fTiuzlandiju:Oforj#z’

T4

[ —div(aVu) = g, r €,

D [ u=0, x¢& o),

\

o!;o:|oo
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Exponential decay of gamblets

Theorem

Vi

r-axis slice

r-axis slice




Localization of the )
computation of gamblets ]
:°“": Minimizer of . Sy
Ty
Minimize %] a (A
Subject to ¢ € Hg(S,) and [y ¢;9 = 0y
for r; € 5,

No loss of accuracy if

localization ~ H In %

ut o (a) = YT P (@) o uly)dily) dy

Theorem Ifr > CHIn+

lo € <= Hllglli2(0)

x,loc

|u —u




Formulation of the hierarchical game




Hierarchy of nested Measurement functions ¢(1)

o) with ke {l,...,q) %
k k+1
ng ) — Z Cz,ij( 1) ¢ ¢ o; (2)

11,71 7 1,72 11,73 T 11,74

Example
BB B LB
k . . ¢i1,-2,k1¢1 5 k2¢11,'2,k’3 ¢’i1,'2,k4
qb,g ). Indicator functions of a o TR j

hierarchical nested partition of  of resolution H; = 2~*

| ]
(1) A
e 2 J_:I




In the discrete setting simply aggregate elements
(as in algebraic multigrid)

A R S N I R R B
/I/ 1 0.8 K
./ 1 ey s jEHLQiCHQI
i (1) 1 06— o |
7-’[, B 050 | B

|
< s _(2)
q 04 >~ ; . — oal
\ / - oat \ j g oat R /
i 0.2 \ | ozF
Il 1 o1f IQ ‘ 1 ot Ig
L L L L L L L 0 L L L L o | L L L L L L
e 05 0.8 a7 08 08 1 Q 0.1 a2 0.3 0.4 2.6 0.6 a7 0.8 0.8 1 o] 0.1 0z 03 0.4 0.5 0.6 0.7 0.8 09 1

=10 30

=137




Formulation of the hierarchy of games

Player A {—div(aVu)gin Q, Player B

u = 0 on 0],
Chooses
g € L?(Q) Sees { |, uqb,gk), i € Iy}
l9llL2(0) <1 Must predict

wand {foug;""", j € Tpia)




Player B's best strategy

fNN(Oaﬁ)

<f —div(aVu) = g in €, - [ —div(aVv) = € in Q,

\ u = 0 on 0, v = 0 on 01},
Player B's bets

u®) (z) = E[v(w)| [, v()6;" (1) dy = [, u(v)e!” (v) dy, i € T,

The sequence of approximations forms a martingale under
the mixed strategy emerging from the game

fk :U(IQU¢,Ek),ZEIk)

Theorem | JFi C fk+1
v(k)(x) =I5 [U(k+1)(x)|fk]

vF) () := E|v(z)|F]




Accuracy of the recovery

theorem  [lu— u® 0 < 52 gl 2o

(k))

(k) Hj, := max; diam(;

o) =1 @ diam(r™) < Hy




In a discrete setting the last step of the game recovers
the solution to numerical precision
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Gamblets Elementary gambles form a hierarchy of deterministic
basis functions for player B’s hierarchy of bets

Theorem [, k) (1) = 3 ™ (&) [ u(y)o® (y) dy

gb(k): Elementary gambles/bets at resolution Hj, = 27"

1




Gamblets are nested

PF) = Span{¢§k),7l c I} vy,

——=7\

(2)
Theorem wzl,jl wzmz wzl ,J3 sz1,]4

Bk  qkt1)

(3) (3) (3) (3)
wil,jz,kl¢i1,j2,k2¢i1,j2,k3 wilaj2ak4

k k k+1
(@) = X ez R (@)




Interpolation/Prolongation operator

(k) _
Ri,j

R®

t,J

E| [q Qb(kﬂ (y) dy| [, ”U(y)ﬁbl(k)(y) dy =0, | € Iy

Your best bet on the value of fT(k—l—l) U
j

given the information that
ngk>u:1and leu:Oforl#z’

(k+1)

Tz'(k)i 1 \ 0 Tj

00




At this stage you can finish with
classical multigrid

But we want multiresolution decomposition



Elementary gamble

X(‘k) Your best bet on the value of u
1

eiven the information that
fT.(k) u = ]_, f’T_(E) u = —1 and ngk) u = 0 for ] # 7

k
'7-.(_)
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Multiresolution decomposition of the solution space
Pk) = span{w,fk),i c I}
W) = span{xgk),i}

5k+1). Orthogonal complement of Y*) in Yk+1)
with respect to < ¢, x >q:= [(V¥))TaVx

Theorem

H& () = (1) B, 3(2) B, - Dy, 075 (k) B, - -




Multiresolution decomposition of the solution

Theorem

w1l — (k) — FE. sol. of PDE in 2p(k+1)

- il
: \"‘ fiv N
- ’l““t“"’i“‘;‘:{»
isinte

Subband solutions (k1) — (k)
can be computed independently



Uniformly bounded condition numbers

AR = (™) gty

Theorem

/\max B(®)

<

Just relax!

In v € k)

to get
u(k) — u(k_1>
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Coefficients of the solution in the gamblet basis




Operator Compression

Gamblets behave like wavelets but they are adapted to the
PDE and can compress its solution space

e ) Energy norm relatlve error = 0. 07

Gamblet compressmn

—

Throw 99% of the coefficients




Fast gamblet transform ‘(’)(Nln2 N) complexity

A®) = (RF+INT A(k+1) R(k,h+1)

Nesting

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

Underlying linear systems have uniformly bounded
condition numbers

pi = i)+ 3 Ol DL Gk x — (B =1z (kD)

(k+1) (k+1) (k:—l—l) (k+1)
ZHD = (e T Al

L ocalization

The nested computation can be localized without
compromising accuracy or condition numbers



©Ds s Ah, Mh— wi(Q), A(q) . XEQ)) B(q)

e (@ — (a1

(el —qyla=2)

> u(3) _ U(Z)

1 /
wi(q_l), A(q_l) ng—1)7B(q_1)
Parallel - ;
operating P AB) L 1P BB
diagram (2)1 { )
both in space % »AY—. x;”,B®
and in } /
b AW

frequency




