Periodic-orbit evaluation of a spectral statistic of quantum graphs without the semiclassical limit

Jon Harrison¹ and Tori Hudgins²

¹Baylor University, ²University Dallas

TexAMP - 4/10/21

Supported by Simons Foundation colaboration grant 354583.

Jon Harrison Spectral statistics without the semiclassical limit

Dynamical approach to spectral statistics

- '71 Gutzwiller's trace formula for the density of states in the semiclassical limit.
- '85 Berry Diagonal approximation to the form factor using Hannay-Ozorio de Almeida sum rule.
- '99 Kottos and Smilansky trace formula for the density of states of quantum graphs.
- '01 Sieber and Richter 2nd order contribution to the small parameter asymptotics of the form factor from figure 8 orbits with one self-intersection.
- '03 Berkolaiko, Schanz and Whitney 2nd and 3rd order contributions on quantum graphs.
- '04 Müller, Heusler, Braun, Haake and Altland all higher order contributions.

- 4 同 ト 4 ヨ ト 4 ヨ ト

4-regular quantum graph model

- 4-regular directed graph: 2 incoming and 2 outgoing bonds at each vertex. (Always possible as admits Euler tour.)
- Assign length $L_b > 0$ to each bond, set of bond lengths incommensurate.
- To quantize assign 2 × 2 unitary vertex scattering matrix at each vertex,

$$\sigma^{(\nu)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} . \qquad \qquad \text{BAYLOR}$$

Characteristic polynomial

Combine vertex scattering matrices into an $B \times B$ matrix Σ ,

$$\Sigma_{b,b'} = egin{cases} \sigma_{b,b'}^{(v)} & v = t(b') = o(b) \ 0 & ext{otherwise} \end{cases},$$

Quantum evolution op. $U(k) = e^{ikL}\Sigma$, with $L = diag\{L_1, \ldots, L_B\}$.

Characteristic polynomial

$$F_{\xi}(k) = \det \left(\xi \mathrm{I} - U(k)\right) = \sum_{n=0}^{B} a_n \xi^{B-n}$$

- Spectrum corresponds to roots of $F_1(k) = 0$.
- Riemann-Siegel lookalike formula $a_B = a_B a_{B-n}^*$.

Periodic orbits

- A *periodic orbit* γ = (b₁,..., b_m) is an equivalence class of closed paths under cyclic shifts.
- A *primitive periodic orbit* is a periodic orbit that is not a repetition of a shorter orbit.
- Topological length of γ is m.
- Metric length of γ is $L_{\gamma} = \sum_{b_j \in \gamma} L_{b_j}$.
- Stability amplitude is $A_{\gamma} = \sum_{b_2 b_1} \sum_{b_3 b_2} \dots \sum_{b_m b_{m-1}} \sum_{b_1 b_m}$.

Example: primitive periodic orbit with 4 bonds.

Pseudo orbits

- A *pseudo orbit* $\tilde{\gamma} = \{\gamma_1, \dots, \gamma_M\}$ is a set of periodic orbits.
- A primitive pseudo orbit (PPO) γ
 is a set of distinct primitive periodic orbits.
- $m_{\bar{\gamma}} = M$ no. of periodic orbits in $\bar{\gamma}$.
- \mathcal{P}^n set of PPO with *n* bonds.
- Metric length $L_{\tilde{\gamma}} = \sum_{j=1}^{M} L_{\gamma_j}$.
- Stability amplitude $A_{\tilde{\gamma}} = \prod_{j=1}^{M} A_{\gamma_j}$.

Example: PPO with 6 bonds consisting of $m_{\bar{\gamma}} = 3$ distinct primitive periodic orbits.

Theorem (Band, H., Joyner)

Coefficients of the characteristic polynomial $F_{\xi}(k)$ are given by,

$$\mathsf{a}_n = \sum_{ar{\gamma} \in \mathcal{P}^n} \left(-1
ight)^{m_{ar{\gamma}}} \mathsf{A}_{ar{\gamma}} e^{\mathrm{i}k L_{ar{\gamma}}} \; .$$

- Expand det $(\xi I U(k))$ as a sum over permutations.
- A permutation ρ ∈ S_B can contribute iff ρ(b) is connected to b for all b in ρ, i.e t(b) = o(ρ(b)).
- Representing ρ as a product of disjoint cycles each cycle is a primitive periodic orbit.

Variance of coefficients of the characteristic polynomial

$$\langle a_n
angle = \sum_{ar{\gamma} \mid E_{ar{\gamma}} = n} (-1)^{m_{ar{\gamma}}} A_{ar{\gamma}} \lim_{K \to \infty} rac{1}{K} \int_0^K \mathrm{e}^{\mathrm{i}kL_{ar{\gamma}}} \mathrm{d}k = \begin{cases} 1 & n = 0 \\ 0 & \mathrm{otherwise} \end{cases}$$

$$\begin{aligned} \langle |a_{n}|^{2} \rangle &= \sum_{\bar{\gamma} \in \mathcal{P}^{n}} (-1)^{m_{\bar{\gamma}} + m_{\bar{\gamma}'}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}'} \lim_{K \to \infty} \frac{1}{K} \int_{0}^{K} e^{ik(L_{\bar{\gamma}} - L_{\bar{\gamma}'})} dk \\ &= \sum_{\bar{\gamma}, \bar{\gamma}' \in \mathcal{P}^{n}} (-1)^{m_{\bar{\gamma}} + m_{\bar{\gamma}'}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}'} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}'}} \\ &= \sum_{\bar{\gamma} \in \mathcal{P}^{n}} C_{\bar{\gamma}} \\ &\qquad (1) \\ C_{\bar{\gamma}} &= \sum_{\bar{\gamma}' \in \mathcal{P}_{\bar{\gamma}}} (-1)^{m_{\bar{\gamma}} + m_{\bar{\gamma}'}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}'} \qquad (2) \\ &\qquad \text{BAYLOR} \end{aligned}$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of PPO length $L_{\bar{\gamma}}$.

Jon Harrison

Spectral statistics without the semiclassical limit

3 . 3

- '99 Variance of coeffs of the characteristic polynomial of graphs Kottos and Smilansky.
- '00 Spectral statistics of binary graphs Tanner.
- '02 Variance of coeffs of characteristic polynomial of binary graphs via permanent of transition matrix Tanner.
- '19 Diagonal contribution for *q*-nary graphs Band, H., Sepanski.

イロト イポト イラト イラト

Theorem (H., Hudgins)

For a 4-regular quantum graph,

$$\langle |a_n|^2 \rangle = \frac{1}{2^n} \left(|\mathcal{P}_0^n| + \sum_{N=1}^n 2^N |\widehat{\mathcal{P}}_N^n| \right) , \qquad (3)$$

where \mathcal{P}_0^n is the set of PPO length n with no self-intersections and $\widehat{\mathcal{P}}_N^n$ is the set of PPO length n with N self-intersections, all of which are 2-encounters of length zero.

- A PPO with n bonds cannot have > n self-intersections.
- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}} = \{\bar{\gamma}\}$ producing the 1st term.
- For most PPO with self-intersections $C_{\bar{\gamma}} = 0$ using parity arguments.
- Exception, PPO where all self-intersections are 2-encounters length zero.

Example 1: Binary de Bruijn graph with 2³ vertices.

n	$ \mathcal{D}^n $	$ \widehat{\mathcal{D}}^n $	$ \widehat{\mathcal{D}}^n $	$ _{2} ^{2}$	Numerics	Frror
	1,01	11	2	\ a n /	Numerics	LIIU
0	1	0	0	1	1.000000	0.000000
1	2	0	0	1	0.999991	0.000009
2	2	0	0	1/2	0.499999	0.000001
3	4	0	0	1/2	0.499999	0.000001
4	8	0	0	1/2	0.499999	0.000001
5	8	8	0	3/4	0.749998	0.000002
6	8	20	0	3/4	0.749986	0.000014
7	16	16	8	5/8	0.624989	0.000011
8	16	16	24	9/16	0.562501	-0.000001

Jon Harrison Spectral statistics without the semiclassical limit

OR

Figure 1: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary de Bruijn graphs with 2^r vertices.

Example 2: Binary graph with $3 \cdot 2$ vertices.

n	$ \mathcal{P}_0^n $	$ \widehat{\mathcal{P}}_1^n $	$\langle a_n ^2 \rangle$	Numerics	Error
0	1	0	1	1.000000	0.000000
1	2	0	1	1.000000	0.000000
2	3	0	3/4	0.750001	-0.000001
3	6	0	3/4	0.750003	-0.000003
4	10	4	7/8	0.874999	0.000001
5	8	4	1/2	0.499998	0.000002
6	8	8	3/8	0.374999	0.000001

Jon Harrison Spectral statistics without the semiclassical limit

イロン イヨン イヨン イヨン

BAYLOR

æ

Figure 2: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary graphs with $3 \cdot 2^r$ vertices.

Jon Harrison Spectral statistics without the semiclassical limit

<ロ> (四) (四) (三) (三)

BAYLOR

Self-intersections

- A *self-intersection* is a section of a pseudo orbit that is repeated one or more times in the pseudo orbit.
- The maximally repeated section is the *encounter* $enc = (v_0, \dots, v_r)$.
- The *length of the encounter* is *r* and an encounter has length zero when the encounter contains no bonds.
- If the encounter is repeated *l* times we refer to an *l*-encounter.
- The encounter can be repeated in a single periodic orbit or across multiple orbits in the pseudo orbit.
- An *I*-encounter with *I* ≥ 3 has preceding and subsequent sections repeated < *I* times as there are only 2 incoming/outgoing bonds at each *v*.

Examples of pseudo orbits with self-intersections

2-encounter: $\bar{\gamma} = (\gamma_1, \dots, \gamma_m)$ with no self-intersections in $\gamma_2, \dots, \gamma_m$ and

$$\gamma_1 = (f_1 \dots, s_1, \text{enc}, f_2, f'_2 \dots, s'_2, s_2, \text{enc}, f_1)$$

abbreviated $\gamma_1 = (1, 2)$ for link 1 followed by link 2.

Examples of pseudo orbits with self-intersections

3-encounter: Define $\bar{\gamma}$ similarly but with $\gamma_1 = (1, 2, 3)$.

(Bonds (s_2, v_0) and (v_r, f_2) preceding and following the encounter are repeated twice.)

- 4 同 1 - 4 日 1 - 4 日

Semiclassical limit

For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \to \infty$. To take the semiclassical limit of the variance we fix n/B and consider long orbits on large graphs.

- In the semiclassical limit half of PPO with a 2-encounter will have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is 1/2.
- As the graph is mixing the proportion of orbits with
 3-encounters is vanishingly small compared to 2-encounters.
- Let \mathcal{P}_N^n denote the set of primitive pseudo orbits length *n* with N encounters. Then $|\widehat{\mathcal{P}}_N^n| \approx 2^{-N} |\mathcal{P}_N^n|$.

$$\langle |\boldsymbol{a}_n|^2 \rangle = 2^{-n} \left(|\mathcal{P}_0^n| + \sum_{N=1}^n 2^N |\widehat{\mathcal{P}}_N^n| \right) \approx 2^{-n} \sum_{N=0}^n |\mathcal{P}_N^n| = 2^{-n} |\mathcal{P}_N^n|$$
BAYLOR

・ロット (四) (日) (日)

Future directions

- Examples were binary graphs where we use a connection to Lyndon words to count primitive pseudo orbits.
- Are there other families of 4-regular graphs where pseudo orbits can be counted?
- Does the result extend to *k*-regular graphs? Partial results appeared in Tori's thesis.
- Can the cancellation scheme be applied in other quantum chaotic systems?
- J.M. Harrison and T. Hudgins, "Periodic-orbit evaluation of a spectral statistic of quantum graphs without the semiclassical limit," arXiv:2101.00006
- J.M. Harrison and T. Hudgins, "Complete dynamical evaluation of the characteristic polynomial of binary quantum YLOF graphs," arXiv:2011.05213