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Quantum graph model

Dynamical approach to spectral statistics
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Gutzwiller's trace formula for the density of states in the
semiclassical limit.

Berry - Diagonal approximation to the form factor using
Hannay-Ozorio de Almeida sum rule.

Kottos and Smilansky - trace formula for the density of states
of quantum graphs.

Sieber and Richter - 2nd order contribution to the small
parameter asymptotics of the form factor from figure 8 orbits
with one self-intersection.

Berkolaiko, Schanz and Whitney - 2nd and 3rd order
contributions on quantum graphs.

Miiller, Heusler, Braun, Haake and Altland - all higher order
contributions. BAYLOR
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Quantum graph model

4-regular quantum graph model

@ 4-regular directed graph: 2 incoming and 2 outgoing bonds at
each vertex. (Always possible as admits Euler tour.)

@ Assign length L, > 0 to each bond, set of bond lengths
incommensurate.

@ To quantize assign 2 x 2 unitary vertex scattering matrix at
each vertex,

w_ 1 (11
g = — .
VA BAYLOR
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Quantum graph model

Characteristic polynomial

Combine vertex scattering matrices into an B x B matrix X,

{o—gyg, v = t(b') = o(b)

Yy =

Y

0 otherwise

Quantum evolution op. U (k) = ¢'*tS, with L = diag{Ly,...,Lg}.

Characteristic polynomial

B
Fe (k) = det (€1 = U(K)) = 3" 265"
n=0

@ Spectrum corresponds to roots of Fi(k) = 0.

e Riemann-Siegel lookalike formula ag = agag_,,. BAYLOR
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Quantum graph model

Periodic orbits

e A periodic orbit 7y = (b1, ..., bm) is an equivalence class of
closed paths under cyclic shifts.

@ A primitive periodic orbit is a periodic orbit that is not a
repetition of a shorter orbit.

e Topological length of ~ is m.
e Metric length of v is L, = ij@ Lp,.
e Stability amplitude is A,y = Zb2b12b3b2 R mebmfliblbm.

Example: primitive periodic orbit with 4 bonds.

° BAYLOR
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Quantum graph model

Pseudo orbits

A pseudo orbit ¥ = {7y1,...,7m} is a set of periodic orbits.
A primitive pseudo orbit (PPQO) 7 is a set of distinct primitive
periodic orbits.

msy = M no. of periodic orbits in 7.
P" set of PPO with n bonds.
Metric length Ly = EJAil L.
o Stability amplitude A5 = []'2; Ay,.
Example: PPO with 6 bonds consisting of ms = 3 distinct
primitive periodic orbits.

. BAYLOR
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Quantum graph model

Theorem (Band,H.,Joyner)

Coefficients of the characteristic polynomial F¢ (k) are given by,

ap = Z (—1)™ A5k

FePn

@ Expand det (1 — U (k)) as a sum over permutations.

@ A permutation p € Sg can contribute iff p(b) is connected to
b for all bin p, i.e t(b) = o(p(b)).

@ Representing p as a product of disjoint cycles each cycle is a
primitive periodic orbit.

BAYLOR
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Quantum graph model

Variance of coefficients of the characteristic polynomial

K—oo K 0 otherwise

1 (K. 1 =0

~ Es=n

1 K
2 my+msy ik(Ly—Ls/)
P =S (1) AR lim i=Li) dk

FePn
= Z (1) M A A, 0Ly Lo

5.5 €Pn
=G M)
yePn
G =D, (F)™AsAy 2)
. BAYLOR

where Ps is the set of PPO length L5.
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Quantum graph model

'99 Variance of coeffs of the characteristic polynomial of graphs —
Kottos and Smilansky.

'00 Spectral statistics of binary graphs — Tanner.

'02 Variance of coeffs of characteristic polynomial of binary
graphs via permanent of transition matrix — Tanner.

'19 Diagonal contribution for g-nary graphs — Band, H., Sepanski.

BAYLOR
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Main result and examples

Theorem (H., Hudgins)
For a 4-regular quantum graph,
1 : ~
(lanl®) = > (\7’6'! +> 2N \7’/’\’/\) : 3)
N=1

where P is the set of PPO length n with no self-intersections and
Py is the set of PPO length n with N self-intersections, all of
which are 2-encounters of length zero.

@ A PPO with n bonds cannot have > n self-intersections.

e If 4 has no self-intersections Ps = {7} producing the 1st term.

@ For most PPO with self-intersections C5 = 0 using parity
arguments.

@ Exception, PPO where all self-intersections are 2- encountergAYLOR
length zero.
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Main result and examples

Example 1: Binary de Bruijn graph with 23 vertices.

n P8 Pl P53l (lan]?) Numerics Error

0 1 0 0 1 1.000000 0.000000

1 2 0 0 1 0.999991  0.000009

2 2 0 0 1/2 0.499999  0.000001

3 4 0 0 1/2 0.499999  0.000001

4 8 0 0 1/2 0.499999  0.000001

5 8 8 0  3/4 0749998  0.000002

6 8 20 0  3/4 0749986 0.000014

7 16 16 8  5/8 0.624989 0.000011

8 16 16 24 9/16 0562501 -0.000001 'AVEOR
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Main result and examples

(lanl?)

n/B

Figure 1: Variance of coefficients of the characteristic polynomial for the

. ) . .. Ay :
family of 4-regular binary de Bruijn graphs with 2" vertices. BAYLOR

Jon Harrison Spectral statistics without the semiclassical limit



Main result and examples

Example 2: Binary graph with 3 - 2 vertices.

n |P§ [Pl {(las*) Numerics Error

0 1 0 1 1.000000 0.000000
1 2 0 1 1.000000 0.000000
2 3 0 3/4  0.750001 -0.000001
3 6 0 3/4  0.750003 -0.000003
4 10 4 7/8  0.874999 0.000001
5 8 4 1/2 0.499998  0.000002
6 8 8 3/8  0.374999 0.000001

Jon Harrison
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Main result and examples
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Figure 2: Variance of coefficients of the characteristic polynomial for the

family of 4-regular binary graphs with 3 - 2" vertices.
BAYLOR
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Pseudo orbits with self-intersections

Self-intersections

@ A self-intersection is a section of a pseudo orbit that is
repeated one or more times in the pseudo orbit.

@ The maximally repeated section is the encounter
enc = (vp,..., V).

@ The length of the encounter is r and an encounter has length
zero when the encounter contains no bonds.

@ If the encounter is repeated / times we refer to an [-encounter.

@ The encounter can be repeated in a single periodic orbit or
across multiple orbits in the pseudo orbit.

@ An /-encounter with / > 3 has preceding and subsequent
sections repeated < / times as there are only 2

incoming/outgoing bonds at each v. BAYLOR
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Pseudo orbits with self-intersections

Examples of pseudo orbits with self-intersections

2-encounter: 5 = (y1,...,7Ym) with no self-intersections in
Y2y .-+ ¥Ym and

! /
yv1=(f...,s1,enc, o, fy... sy, 8, enc,f)

BAYLOR
abbreviated 71 = (1, 2) for link 1 followed by link 2. B
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Pseudo orbits with self-intersections

Examples of pseudo orbits with self-intersections

linky

3-encounter: Define ¥ similarly but with 71 = (1,2, 3).

(Bonds (s>, vp) and (v,. f>) preceding and following the encounter

are repeated twice.) BAYLOR
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Pseudo orbits with self-intersections

Semiclassical limit

For quantum graphs the semiclassical limit is the limit of a
sequence of graphs with B — oco. To take the semiclassical limit of
the variance we fix n/B and consider long orbits on large graphs.

@ In the semiclassical limit half of PPO with a 2-encounter will
have encounter length zero, as the probability to follow the
orbit at the initial encounter vertex is 1/2.

@ As the graph is mixing the proportion of orbits with
3-encounters is vanishingly small compared to 2-encounters.

o Let Py denote the set of primitive pseudo orbits length n with
N encounters. Then |73,’\’,| ~2-Npr .

n n
(lan?y = 27" [ |P§] + Z 2N PRl 27" Z [Pl =2""|P"
N=1 N=0 BAYLOR
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Pseudo orbits with self-intersections

Future directions

@ Examples were binary graphs where we use a connection to
Lyndon words to count primitive pseudo orbits.

@ Are there other families of 4-regular graphs where pseudo
orbits can be counted?

@ Does the result extend to k-regular graphs? Partial results
appeared in Tori's thesis.

@ Can the cancellation scheme be applied in other quantum
chaotic systems?

@ J.M. Harrison and T. Hudgins, "“Periodic-orbit evaluation of a
spectral statistic of quantum graphs without the semiclassical
limit,” arXiv:2101.00006

[§ J.M. Harrison and T. Hudgins, “Complete dynamical
evaluation of the characteristic polynomial of binary quantugyyi or
graphs,” arXiv:2011.05213 R
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