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1. Introduction

One of the hot topics in the Nonlinear Science is the

integro-differential equations in Mathematical Biology: nonlocal
consumption of resources, intra-specific competition. Also, the nonlocal

interaction of neurons.

∂u

∂t
= D

∂2u

∂x2
+

∫ ∞

−∞

K(x− y)g(w(y)u(y, t))dy + αδ(x), α ∈ R, (1)

α 6= 0 and δ(x) is the Dirac delta function from cell population dynamics.

Cell genotype is x, cell density as a function of the genotype and time is

u(x, t). The evolution of cell density is due to cell proliferation,

mutations and cell influx/efflux. The change of genotype due to small

random mutations-normal diffusion term. Large mutations is the integral

term. g(w(x)u(x)) is the rate of cell birth, depends on u,w (density

dependent proliferation). K(x− y) is the proportion of newly born cells

changing their genotype from y to x, depends on the distance between
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the genotypes. αδ(x) is the influx/efflux of cells for different genotypes,

singular situation. w(x) is our cut-off function.

ex. w(x) = e−|x|, x ∈ R.

Recall earlier work: V.V., Vitaly Volpert, Springer (2018). Dedicated to

the 70th Anniversary of Professor Afraimovich.

∂u

∂t
= −D

(
− ∂2

∂x2

)s

u+

∫ ∞

−∞

K(x− y)g(u(y, t))dy + f(x), (2)

where 0 < s <
1

4
. We proved the existence of a stationary solution in

H1(R). The space variable corresponds to the cell genotype,
not the usual physical space. A disease can be caused by

1,2,3,...,100,... genes.

Anomalous diffusion problem with

(
− ∂2

∂x2

)s

: defined via the spectral
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calculus, namely

f(x) =
1√
2π

∫ ∞

−∞

f̂(p)eipxdp,

(
− ∂2

∂x2

)s

f(x) =
1√
2π

∫ ∞

−∞

|p|2sf̂(p)eipxdp.

Anomalous diffusion: plasma physics and turbulence.

B.Carreras, V.Lynch, G.Zaslavsky, Phys. Plasmas (2001).

Surface diffusion.

J.Sancho, A. Lacasta, K.Lindenberg, I.Sokolov, A.Romero, Phys. Rev.

Lett. (2004).

Semiconductors.

H.Scher, E.Montroll, Phys. Rev. B (1975).

Physical meaning: the random process occurs with longer jumps in

comparison with normal diffusion.

Normal diffusion: finite moments of jump length distribution.

5



✬

✫

✩

✪

Anomalous diffusion: not the case.

R. Metzler, J. Klafter, Phys. Rep. (2000).

Stationary situation:
∂u

∂t
= 0, assume the diffusion coefficient D = 1.

d2u

dx2
+

∫ ∞

−∞

K(x− y)g(w(y)u(y))dy + αδ(x) = 0. (3)

Set K(x) = εK(x), ε ≥ 0 small parameter.

Sobolev norm

‖φ‖2H1(R) := ‖φ‖2L2(R) +

∥∥∥∥∥
dφ

dx

∥∥∥∥∥

2

L2(R)

.

Sobolev inequality in one dimension

‖φ(x)‖L∞(R) ≤
1√
2
‖φ(x)‖H1(R). (4)
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E. Lieb, M.Loss, “Analysis”, Providence (1997). Recall the algebraic

property of our Sobolev space, follows for instance from (4):

for any u(x), v(x) ∈ H1(R)

‖u(x)v(x)‖H1(R) ≤ ca‖u(x)‖H1(R)‖v(x)‖H1(R), (5)

ca > 0 is a constant.

When the parameter ε vanishes, we obtain the linear Poisson
equation with a singular right side

−d
2u

dx2
= αδ(x), x ∈ R. (6)

The ramp function

R(x) :=




x, x ≥ 0

0, x < 0.
(7)
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The Heaviside step function

H(x) :=




1, x ≥ 0

0, x < 0.
(8)

Clearly
dR(x)

dx
= H(x),

dH(x)

dx
= δ(x).

The solution of Poisson equation (6) vanishing at minus infinity:

−αR(x). (9)

(9) is unbounded, does not belong to H1(R).

In V.V., Vitaly Volpert, Springer (2018) the unique solution of the

Poisson with the minus Laplacian to the fractional power u0(x) ∈ H1(R),

bounded via the Sobolev inequality (4) and no need for the cut-off

function w(x).
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Assume:

w(x) : R → R, w(x) ∈ H1(R), w(x)R(x) is nontrivial,

w(x)R(x) ∈ H1(R), |α| ≤ 1

‖w(x)R(x)‖H1(R)
.

The standard Fourier transform

φ̂(p) =
1√
2π

∫ ∞

−∞

φ(x)e−ipxdx. (10)

Upper bound

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R). (11)

Sobolev norm using Fourier transform (10)

‖φ‖2H1(R) = ‖φ̂(p)‖2L2(R) + ‖pφ̂(p)‖2L2(R). (12)
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2. Fixed point argument

Seek the resulting solution of the stationary nonlinear problem (3) as

u(x) = −αR(x) + up(x). (13)

Perturbative equation

−d
2up(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g(w(y)[−αR(y) + up(y)])dy. (14)

The Fixed Point argument in a closed ball in our Sobolev space:

Bρ = {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (15)

Seek the solution of (14) as the fixed point of the auxiliary nonlinear

problem

−d
2u(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g(w(y)[−αR(y) + v(y)])dy, (16)
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in ball (15). The non Fredholm operator in the left side of (16)

− d2

dx2
on L2(R).

Its essential spectrum

σess

(
− d2

dx2

)
= [0,+∞),

no bounded inverse. Similar situations, integro-differential equations

V.V., V.Volpert, Doc. Math. (2011),

V.V., V.Volpert, Anal. Math. Phys. (2012).

The fixed point technique to estimate the perturbation to the standing

solitary wave

ψ(x, t) = φ(x)eiωt
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of the Nonlinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + V (x)ψ + F (|ψ|2)ψ

when small perturbation is applied either to the potential or to the

nonlinear term. The Schrödinger operator involved had the Fredholm

property.

V.V., Math. Model. Nat. Phenom., (2010).

The operator Tg via the auxiliary nonlinear problem (16), such that

u = Tgv, u is a solution.

The existence, stability and bifurcations of the solutions of nonlinear

PDEs with Dirac delta function were studied actively in

R. Adami, D. Noja, Math. Model. Nat. Phenom., (2014).

R. Fukuizumi, L. Jeanjean, Discrete Contin. Dyn. Syst., (2008).

J. Holmer, J. Marzuola, M. Zworski, Comm. Math. Phys., (2007).
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Our main result is as follows.

Theorem 1. Under our technical assumptions problem (16) defines the

map Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε ≤ ε∗ for a

certain ε∗ > 0. The unique fixed point up(x) of the map Tg is the only

solution of problem (14) in Bρ.

The resulting stationary solution of (3) is nontrivial: the parameter α 6= 0

and g(0) = 0 as assumed.

Proof. Choose arbitrarily v(x) ∈ Bρ, denote

G(x) := g(w(x)[−αR(x) + v(x)]).

Apply the standard Fourier transform (10) to (16). Thus

û(p) = ε
√
2π

K̂(p)Ĝ(p)

p2
, pû(p) = ε

√
2π

K̂(p)Ĝ(p)

p
. (17)
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Positive technical expression

Q := max

{∥∥∥∥∥
K̂(p)

p2

∥∥∥∥∥
L∞(R)

,

∥∥∥∥∥
K̂(p)

p

∥∥∥∥∥
L∞(R)

}
. (18)

Assume about our kernel:

K(x) : R → R is nontrivial, K(x) ∈ L
1(R), x2K(x) ∈ L

1(R).

It can be easily established that if

K̂(p)

p2
∈ L∞(R) then

K̂(p)

p
∈ L∞(R) as well.

We split into the singular and the regular parts as

K̂(p)

p2
=

K̂(p)

p2
χ{|p|≤1} +

K̂(p)

p2
χ{|p|>1}. (19)

For the second term in the right side of (19), using (11)

14



✬

✫

✩

✪

∣∣∣∣∣
K̂(p)

p2
χ{|p|>1}

∣∣∣∣∣ ≤ ‖K̂(p)‖L∞(R) ≤
1√
2π

‖K(x)‖L1(R) <∞.

Let us express

K̂(p) = K̂(0) + p
dK̂
dp

(0) +

∫ p

0

(∫ s

0

d2K̂(q)

dq2
dq

)
ds.

The first term in the right side of (19), to the leading order
[
K̂(0)

p2
+

dK̂
dp

(0)

p

]
χ{|p|≤1}. (20)

Definition (10) of the standard Fourier transform yields

K̂(0) =
1√
2π

∫ ∞

−∞

K(x)dx =
1√
2π

(K(x), 1)L2(R), (21)

dK̂
dp

(0) = − i√
2π

∫ ∞

−∞

K(x)xdx = − i√
2π

(K(x), x)L2(R). (22)
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Formulas (21) and (22) enable us to write expression (20) as
[
(K(x), 1)L2(R)√

2πp2
− i

(K(x), x)L2(R)√
2πp

]
χ{|p|≤1}. (23)

Evidently, (23) is bounded if and only if orthogonality relations

(K(x), 1)L2(R) = 0, (K(x), x)L2(R) = 0 (24)

hold. Impose (24), then the expression Q defined in (18) is finite.

By means of (17) we estimate

|û(p)| ≤ ε
√
2πQ|Ĝ(p)|, |pû(p)| ≤ ε

√
2πQ|Ĝ(p)|. (25)

Using the expression for the Sobolev norm via the Fourier transform (12)

along with (25) we obtain

‖u(x)‖H1(R) ≤ εC ≤ ρ (26)

for all 0 < ε ≤ ε∗, such that u(x) ∈ Bρ as well.
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To establish the uniqueness, suppose for some v(x) ∈ Bρ there exist two

solutions u1,2(x) ∈ Bρ of (16). The difference

w(x) = u1(x)− u2(x) ∈ L2(R) solves − d2

dx2
w(x) = 0. No nontrivial

square integrable zero modes for − d2

dx2
on R, w(x) ≡ 0. Then (16)

defines a map Tg : Bρ → Bρ for all 0 < ε ≤ ε∗.

To show that this map is a strict contraction.

Choose arbitrarily v1,2(x) ∈ Bρ. Then u1,2 := Tgv1,2 ∈ Bρ as well for

0 < ε ≤ ε∗.

− d2

dx2
u1(x) = ε

∫ ∞

−∞

K(x− y)g(w(y)[−αR(y) + v1(y)])dy,

− d2

dx2
u2(x) = ε

∫ ∞

−∞

K(x− y)g(w(y)[−αR(y) + v2(y)])dy.

Introduce

G1(x) := g(w(x)[−αR(x) + v1(x)]), G2(x) := g(w(x)[−αR(x) + v2(x)]).
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Apply the standard Fourier transform (10). Arrive at

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

p2
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

p2
.

Evidently,

|û1(p)− û2(p)| ≤ ε
√
2πQ|Ĝ1(p)− Ĝ2(p)|, (27)

|p[û1(p)− û2(p)]| ≤ ε
√
2πQ|Ĝ1(p)− Ĝ2(p)|. (28)

Formula (12) for the Sobolev norm via the Fourier transform and (27),

(28) help us to estimate the norm

‖u1(x)− u2(x)‖H1(R) ≤ εC‖v1(x)− v2(x)‖H1(R). (29)

The constant in the right side of (29) εC < 1 for all 0 < ε ≤ ε∗, such that

Tg : Bρ → Bρ defined by (16) is strict contraction.

Unique fixed point up(x) is the only solution of the perturbative equation

(14) in Bρ.
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The resulting solution of the stationary problem (3):

u(x) = −αR(x) + up(x),

where −αR(x) solves our Poisson equation (6) with the Dirac delta

function in the right side and vanishes at the negative infinity.

By means of estimate (26) above we have

‖up(x)‖H1(R) ≤ εC,

such that

‖up(x)‖H1(R) → 0 as ε→ 0.

Also proved: the cumulative solution u(x) of our stationary, nonlocal

equation (3) is continuous in the H1(R) norm with respect to the

nonlinear, continuously differentiable rate of cell birth function g(z).
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4. Discussion of the future work

1. To study the convergence of the solutions u(x, t) of the integro-

differential equations to the equilibrium.

2. To generalize the results on the existences of the stationary solutions

to the case when the normal diffusion is combined with the anomalous

diffusion in a single integro-differential equation or a system of coupled

integro-differential equations. M.Efendiev, V.V., J. Differential Equations

(2021).

3. To perform the iterations of the kernels of integro-differential

equations and to show the existence of their stationary solutions in the

sense of sequences.

4. To work on the preservation of the nonnegativity of solutions of the

systems of parabolic equations. M.Efendiev, V.V., Springer chapters

(2021).
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