Measure Rigidity for Diagonal Actions

Manfred Einsiedler, ETHZ
joint work with Elon Lindenstrauss

Eighth Annual Texas Analysis and Mathematical Physics Symposium
Motivation: QUE

Let M be a compact negatively curved manifold and let ϕ_n be L^2-normalized eigenfunctions with eigenvalue going to infinity and distributions converging in the sense that $|\phi_n|^2 dv \rightarrow dv$ as $n \rightarrow \infty$. Then Rudnick and Sarnak conjectured $dv = dv_0$. This is commonly referred to as the \underline{Quantum Unique Ergodicity conjecture}.

Figure 1A

Figure 1B

Figure 4

from RECENT PROGRESS ON THE QUANTUM UNIQUE ERGODICITY CONJECTURE
Sarnak, Bulletin of the AMS 2011
Motivation: QUE

Research in the direction of QUE is very active. We focus on the following partial result:

Then (Arithmetic QUE: Lindenstrauss '06, Soundararajan '10)

Suppose $M = \text{SL}_2(\mathbb{Z}) \backslash \mathcal{H}$ is the "modular surface" and ϕ_n are L^2-normalized joint eigenfunctions of all Hecke-operators and Δ with diverging eigenvalues.

Then $|\phi_n|_{\text{dvol}} \rightarrow \text{dvol}$ as $n \rightarrow \infty$.

Method of proof

1. Construction of the microlocal lift gives a measure μ on $T^1M = \text{SL}_2(\mathbb{Z}) \backslash \text{SL}_2(\mathbb{R}) = X$

 invariant under the geodesic flow $A = \{ (e^{it}e^{it}) : t \in \mathbb{R} \}$

2. Establishing Positive entropy of all ergodic components

3. Establishing Recurrence for "Hecke-orbits"

4. Classifying all probability measures μ on X with the properties 1, 2, & 3

5. Showing $\mu(X) = 1$ using, once more, number theory
Motivation: QUE

What are the Hecke operators on \(\mathcal{M} = \text{SL}_2(\mathbb{Z}) \backslash \Gamma \)?

Let \(p \in \mathbb{N} \) be a prime.

\[
\begin{align*}
\frac{1}{2} & \rightarrow \frac{1}{2} \\
\frac{i}{2} & \rightarrow -\frac{i}{2} \Leftrightarrow \frac{2}{p} \\
\frac{1}{2i} & \rightarrow -\frac{1}{2i} \Leftrightarrow \frac{2+i}{p}
\end{align*}
\]

"Multiplication by \(p \) leads from \(z \in \mathcal{M} \) to \(p+1 \) points in \(\mathcal{M} \)"

Hecke operator

\[
H_p(f) = \frac{1}{\prod_{i=1}^{p-1}} \left(f(pz) \sum_{i=0}^{p-1} f(pz_i) \right)
\]

Hecke orbit

\((p+1)\)-regular tree embedded in \(\mathcal{M} \) for every initial vertex \(z \in \mathcal{M} \).
Short history

Example let $T = \mathbb{R}/\mathbb{Z}$ be the circle group and $T_3(x) = 3x \mod 1$.
Then T_3 has lots of complicated (chaotic) orbits and invariant sets.

E.g. $C = \left\{ \sum_{n=1}^{\infty} x_n 3^{-n} : x_n \in \{0,1,2\} \right\}/\mathbb{Z}$

Thus (Furstenberg, 1967)

If $A \subseteq T$ is closed and invariant under T_2 and T_3, then either $A = T$ or $A \subseteq \mathbb{Q}/\mathbb{Z}$ is finite.

Idea If $A \cap C$ is an accumulation point, then $A = \overline{T}$.

$\log 2, \log 3$ wind over Q

$X \log 2 + X \log 3 = \mathbb{R}$

$N \log 2 + N \log 3$ is getting more & more dense to the right $\in \mathbb{R}$
Thm (Rudolph 1990)
If \(\mu \) is a \(T_2 \)- and \(T_3 \)-invariant and ergodic probability measure with \(h_\mu(T_2) > 0 \) (or \(h_\mu(T_3) > 0 \)) then \(\mu = Lebesgue \).

Useful info:
\[
\begin{align*}
 h_\mu(T_2) &= (\dim \mu) \log 2 \\
 h_\mu(T_3) &= (\dim \mu) \log 3
\end{align*}
\]

In other cases the connection between entropy & dimension is less straightforward.

Further conjectures in this direction are due to Furstenberg, Katok-Spatzier, Manzulis.
The old theorems

Thm (Lindenstrauss '06)
Let \(X = \tilde{\Gamma} \setminus \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \)
for an irreducible lattice \(\tilde{\Gamma} \)
and let \(A = \left\{ \left(\left(\begin{smallmatrix} e^{t_1} & \ast \\ 0 & e^{t_2} \end{smallmatrix} \right) \right)^n : t_1, t_2 \in \mathbb{R} \right\} \)

Thm (Einsiedler, Kottke, Lindenstrauss '06)
let \(X = \mathcal{S}_3(\mathbb{Z}) \setminus \text{SL}_3(\mathbb{R}) \) and let
\(A = \left\{ \left(\begin{smallmatrix} e^{t_1} & e^{t_2} \\ e^{t_2} & e^{t_3} \end{smallmatrix} \right) : t_1 + t_2 + t_3 = 0 \right\} \)

If \(\mu \) is an \(A \)-invariant and ergodic probability measure on \(X \) with
\(\mu(0) > 0 \) for some \(0 \in A \), then
\(\mu = \text{inv}_X \) is the invariant volume
measure on \(X \).
Motivation: QUE

How to show positive entropy!

Assume zero entropy

\[\mu(\delta\text{-tube}) \geq \delta \]

geometrically small set

large measure

positive entropy

positive dimension transverse to \(A \)

\[\mu(\delta\text{-tube}) \leq \delta^k \]

for some \(k > 0 \)

Applying the Oseledec assumption for all \(p < T \)

we find many other \(\delta \)-tubes with a lot of mass.

This way overlaps are forced.

\(x \) needs to be a periodic point.
The oldish theorem

Thm (Emrulder, Lindenstrauss '15)

This gives a partial classification for A-invariant and ergodic probability measures on $X=\mathbb{I} \setminus G$, where G is a higher rank semisimple Lie group, \mathbb{I} is an arithmetic lattice, and A is a maximal \mathbb{R}-diagonalizable subgroup of G.

The conclusion is more difficult to state. Other possibilities can occur; e.g., M. Rees found a cocompact lattice \mathbb{I}' in $\text{SL}_3(\mathbb{R})$ so that $H=\{(0,0,0)\}$ has a closed orbit

$$\mathbb{I}' \cong \text{SL}_2(\mathbb{R}) \times \mathbb{R}^\times$$

\[X=\mathbb{I}' \setminus \text{SL}_3(\mathbb{R}) \] 8-dim compact manifold
The general idea

μ is invariant under A

$X = T^1 \backslash G$ has stable manifolds for various $\alpha \in A$ and their intersections

- these are orbits of unipotent subgroups $U < G$

μ is not assumed to be invariant under U, but positive entropy for $\alpha \in A$ implies at least something.
The recent theorem

Then (Einsiedler, Lindenstrauss '21+)

let \(X = \mathbb{I} \backslash \text{SL}_2(\mathbb{R})^k \) for some \(k \geq 2 \) and an irreducible arithmetic \(T \).

let \(A \) be a two-parameter \(\mathbb{R} \)-diagonalizable subgroup.

let \(\mu \) be an \(A \)-invariant ergodic probability measure on \(X \) with \(\mu(A) > 0 \) for some \(a \in A \).

If \(X \) is compact, then \(\mu \) is homogeneous, i.e. the invariant measure on a closed orbit of a subgroup.

In general, \(\mu \) is homogeneous or supported on the closed orbit of a solvable subgroup.
New idea

Boshernitzan proved in 1993 Quantitative recurrence results
which we adopt for the study of orbits of stable subgroups.

This simplifies the previous argument for $SL(2, \mathbb{R})$, but becomes increasingly more complicated for other semi-simple groups...
Furstenberg also defined in the same 1967 paper the notion of a joining, which became a fundamental tool for ergodic theory.

Let A be a group acting measure preservingly on two probability spaces (X_1, m_1) and (X_2, m_2). We say μ is a joining for the two actions if μ is a measure on $X_1 \times X_2$ that projects to m_1 resp. m_2 under the coordinate projections and is invariant under the diagonal action of A.

Thm (Einsiedler, Lindenstrauss '19)

Joinings between higher rank actions on irreducible arithmetic quotients of semi-simple Lie groups are always homogeneous.