1. Find all the complex numbers described by the following formulas and sketch their location in the complex plane.
a $\quad(-i)^{2 / 3}$.
b $\left(\frac{1+i}{1-i}\right)^{1 / 2}$.
c $(1)^{i}$.
d $\log (-i / 3)$.
2. Compute the following limits
a $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+3}$
b $\lim _{z \rightarrow-3 i} \frac{z+3 i}{z^{2}+9}$
c $\lim _{z \rightarrow 2} \frac{e^{z}}{z^{2}-4}$
d $\lim _{z \rightarrow 0} \frac{1-\cos z}{z^{2}}$.
3. Find the integral of the function $f(x, y)=3 x^{2}+i x y$ along the contour formed by the straight line from $(-2,1)=-2+i$ to $(2,-1)=2-i$.
4. Let C be a simple closed contour in the plane. Use Green's theorem to show that $\int_{C} \bar{z} d z=2 \operatorname{irea}(Q)$. Here Q is the region bounded by C. Illustrate the theorem by letting C be the circle of radius R about the origin and computing both the contour integral and the area separately.

5 Compute the following integrals: explain in each case whether you use the properties of anti-derivatives, Cauchy's theorem, or one of the Cauchy integral formulas.
a $\int_{C} \frac{1}{z} d z$ where C is the unit semi-circle from $-i$ to i.
b $\int_{C} 2^{z} d z$ where C is the circle of radius 2 about 2 and $\arg 2=0$.
c $\int_{C} \frac{d z}{z^{2}-9}$ where C is the same circle as in part b).
$\mathrm{d} \int_{C} \frac{\cos z}{(z-\pi)^{3}} d z$ where C is again the circle as in part b).
6.

T F Every function $f(x, y)=u(x, y)+i v(x, y)$, where u and v are defined and smooth in the plane, is analytic.

T F There is a function $f(z)$ which is analytic in, for which $\left|f\left(e^{i \theta}\right)\right| \leq$ 1 and $f(0)=i+1$.
$\mathrm{T} \quad \mathrm{F}$ If $f(z)=u(x, y)+i v(x, y)$ is analytic, then $v(x, y$ is harmonic.
$\mathrm{T} \quad \mathrm{F} \quad$ If $f(z)=u(x, y)+i v(x, y)$ and u and v are harmonic, then f is analytic.
7. Prove the fundamental theorem of algebra: Every polynomial $\left.P_{(} z\right)$ of degree $n>0$ can be factored as the product of n linear factors $z-z_{i}$ and a constant.
a Every polynomial $P(z)$ of degree $n>0$ has at least one point z_{0} where $P\left(z_{0}\right)=0$. Assume this is false and find a contradiction by looking at the properties of $\frac{1}{P(z)}$.
b Prove that if $P\left(z_{0}\right)=0$, then $\frac{P(z)}{z-z_{0}}$ has a removeable singularity at z_{0}.
c Now show that $\frac{P(z)}{z-z_{0}}$ is a polynomial of degree $n-1$. Either follow the suggestion in the book, or use the Cauchy integral formulas and the behavior of this function for large $|z|$.
d Finish the proof by using induction on the degree of the polynomial.
8. a Expand $\log \frac{1+z}{1-z}$ in a Taylor series around $z=0$. Use the principle value of \log for your computations.
b Expand $\frac{z+3}{z^{2}+z}$ in a Laurent series about $z=-1$.
9. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(a+\cos \theta)^{2}}$ for $a>1$.
10. Evaluate $\int_{-\infty}^{\infty} \frac{e^{i a x} d x}{\left(1+x^{2}\right)\left(4+x^{2}\right)}$ for $a \geq 0$.

Extra Credit

11. Express the Cauchy Riemann equation in coordinates t, s, where $x=$ $e^{t} \cosh s, y=e^{t} \sinh s$. Use an extra page if necessary.
12. Evaluate $\int_{0}^{\infty} \frac{x^{a}}{1+x^{2}} d x$, where $-1<a<1$.
